1	1	E	72	7
1	1	O	14	16

(Pages: 2)

Name	
Reg. No	

SECOND SEMESTER B.Sc. DEGREE EXAMINATION MAY 2011

(CCSS)

Chemistry - Core Course II

CH2 B03 - THEORETICAL CHEMISTRY

		CH2 B03 - TE	EOR	ETICAL CHEMISTRY		
: Thr	ee Hours	a has the decrease of Manager transfer		Maxii	mum: 30 We	ightage
An	swer all t	twelve questions.				
1.	The rad	dius of the second orbit in	hydro	ogen atom is :		
	(a)	220pm	(b)	240pm		
	(c)	212pm	(d)	224pm		
2.	How ma	any radial nodes are found	l in th	ne case of 4p orbital?		
	(a)		(b)			
	(c)	3	(d)	4		
3.	The bor	nd order of CO molecule is	:			
	(a)		(b)	2		
	(c)	2.5	(d)	3		
4.	The sha	ape of IF, molecule is :				
		square pyramidal	(b)	linear.		
		T shaped.	(d)	pentagonal bipyramid.		
5.	In a ser	miconductor, there is ——		gap between the two energy band	is.	
6	. A zero	bond order suggests that t	he mo	olecule is ———.		
7		gion where there is zero	proba	bility of locating the electron be	etween two	nonzero
8	. The Pft	und series of the emission	spect	rum of hydrogen occurs at	— region.	
9	. Who pr	roposed "plum pudding mo	del" o	f atomic theory?		
10	. What is	s the expression for the en	ergy o	of a particle in a one dimensional	box?	
11	. Give th	ne name of the orbital which	ch opp	ooses the formation of chemical bo	nd.	
12	. What t	type of hybridization is pre	sent i	n SF ₆ molecule?		
		Try mean			$2 \times \frac{1}{4} = 3$ wei	ghtage)

- II. Short answer type questions (Answer all nine questions):
 - 13. Which postulates of the Bohr theory was in accordance with the quantum theory?
 - What is de-Broglie equation? Explain the symbols.
 - What is an operator? Give an example.
 - 16. What are quantum numbers? Mention their names.
 - Is B₂ molecule paramagnetic or diamagnetic? Discuss.
 - 18. What is Born-Oppenheimer approximation?
 - 19. Give the shapes of the molecules having sp³d² and sp³d³ hybridization for the central atom Give one example for each.
 - 20. What is hybridization? Give two characteristics.
 - 21. Calculate the uncertainty in the position of a particle whose uncertainty in momentum is $1.65 \times 10^{-2} \text{ kgms}^{-1}$.

 $(9 \times 1 = 9 \text{ weightage})$

- III. Short essay or paragraph questions (Answer any five questions from seven):
 - 22. What are the short comings of Bohr Theory? Explain.
 - Explain Heisenberg's uncertainty principle with suitable examples.
 - 24. What are the postulates of quantum mechanics?
 - 25. What are radial probability distribution curves? Draw the probability curves for 2s, 3s and 3p orbitals.
 - Explain the differences between valence bond theory and molecular orbital theory.
 - 27. Give the molecular orbital configurations of N_2 and O_2 molecules and calculate their bond
 - 28. What is meant by metallic bond? Discuss the band model for the metallic bond.

 $(5 \times 2 = 10 \text{ weightage})$

- IV. Essay questions (Answer two questions from three):
 - 29. Using Bohr's postulates derive an equation for radius of an orbit and energy of an electron
 - 30. Derive Schrodinger wave equation. Apply it to a particle in one dimensional box.
 - 31. Give an account of molecular orbital theory of H_2^+ molecule. Also explain the potential energy diagram of H2 molecule formation.

 $(2 \times 4 = 8 \text{ weightage})$