Nam	e
	No

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2016

(CUCBCSS-UG)

Complementary Course

CHE 2C 02-PHYSICAL CHEMISTRY

Time: Three Hours

Maximum: 64 Marks

Section A (One word/sentence)

Answer all questions.

Each question carries 1 mark.

- 1. A sealed thermosflask containing hot tea is an example of ----- system.
- 3. —— solids are isotropic.
- 4. The unit cell of a crystal resembled a matchbox in its shape. The crystal belongs to _____ crystal system.
- 5. There are Bravais lattices in a cubic crystal.
- 6. What is the SI unit of viscosity?
- 7. At the normal B.P. of liquid its ——— becomes equal to atmospheric pressure.
- 8. The hydronium ion concentration, in an aqueous solution of CH_3COOH , in terms of dissociation constant Ka and concentration 'C' can be expressed as $[H_3O^+] = ----$.
- 9. When NH₄Cl is dissolved in water, the pH will ———.
- 10. For $Fe_2(SO_4)_3$ solution, the equivalent conductance λ eq and molar conductance λ m are related as

 $(10 \times 1 = 10 \text{ marks})$

Section B (Short Answer)

Answer any seven questions. Each question carries 2 marks.

- 11. Write the Mathematical formulation of the first law of thermodynamics.
- 12. What is the physical significance of Gibb's free energy?
- 13. What are the faulty assumptions in kinetic molecular model?
- 14. Calculate the most probable velocity of N_2 molecule at 300 K.
- 15. Derive the Miller indices of a crystal plane having intercepts 2a, 2b and 3c.

Turn over

- Explain the effect of temperature in the surface tension of a liquid.
- 17. What is reverse osmosis?
- 18. Write the principle of conductometric titrations.
- 19. The molar conductance of 10⁻³ M aqueous solution of weak acid HA is 60 S cm.² mol.⁻¹ If the molar conductance at infinite dilution of H* and A are 250 and 150 ohm.⁻¹ cm.² mol.⁻¹, respectively. Calculate the degree of dissociation of the acid at this concentration.
- 20. The resistance of 0.01 M solution of a weak acid is 5×10^3 ohms, when taken in a conductivity cell of cell constant 0.5 cm. $^{-1}$ Calculate the molar conductance of the solution.

 $(7 \times 2 = 14 \text{ marks})$

Section C (Paragraph)

Answer any **four** questions. Each question carries **5** marks.

- 21. Using Gibbs-Helmholtz equation, illustrate the effect of temperature on the spontaneity of a reaction.
- 22. (a) Giving any one statement of the second law of thermodynamics.
 - (b) The standard molar enthalpy fusion of ice is 6.00 kJ mol.⁻¹ at 0°C. Calculate the entropy of fusion of ice.
- 23. What are liquid crystals? How are they classified? Explain.
- 24. What are colligative properties? Explain the determination of molecular mass of a solute from colligative property values.
- 25. Explain the construction and working of a calomel electrode.
- 26. Write the cell reaction and calculate the EMF at 25°C., of the cell Fe $|Fe^{2+}_{(0.1M)}|Ni^{2+}_{(.01M)}|Ni^{2+}_{(.01M)}|Ni;$ Given $E^{\circ}Fe^{2+}/Fe = -0.44~V$ and $E^{\circ}Ni^{2+}/Ni = -0.25~V$.

 $(4 \times 5 = 20 \text{ marks})$

Section D (Essay)

Answer any **two** questions. Each question carries 10 marks.

- 27. (a) Derive the relation between Enthalpy change and Internal energy change of a reaction.
 - (b) The internal energy change for the reaction:

(4 marks)

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ is -87 kJ at 300 K.

Calculate the value of ΔH at 300 K.

(c) State and explain Third law of thermodynamics.

(3 marks)

(3 marks)

- 28. (a) What are the features of the kinetic molecular model of gases?
 - (b) Write briefly on the different types of defects in crystals.
 - (a) State and explain Henry's law. Mention any two applications of the law.
 - (b) Derive an equation for the pH of an acidic buffer.
- 30. (a) Explain the effect of dilution in the conductance of weak and strong electrolytes
 - (b) Discuss the construction and working of H_2 - O_2 fuel cell.

 (2×10)