-	0	0	0	-1
D	u	8	ên.	88
<i>u</i>	U	U	w	ж,

(Pag = 3)

Nam	e	••

Reg. No.....

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2010

(CCSS)

		Chem	istry—Co	re Course			
		CH3 B05—PI	HYSICAL	CHEMISTRY—I			
Time : Thr	ee Hou	rs		Maximum Weightage: 30			
				Marie Control of State Control			
		the questions. Each questi in the blank and one word		a weightage of ¼. This section contains multiple sestions :			
1	The average distance between successive collisions between gas molecules is called.						
2	The velocity possessed by largest number of molecules in a gas is ———.						
3	Give the SI unit of molar refraction.						
4	Name the apparatus used to determine the surface tension of a liquid.						
5	If the	wo systems are at thermal equilibrium, they will have same:					
	(a)	temperature.	(b)	pressure.			
	(c)	volume.	(d)	number of moles.			
6	A process which occurs infinitesimally slowly and which is virtually at equilibrium at every stage of the process is a:						
	(a)	spontaneous process.	(b)	isothermal process.			
	(c)	reversible process.	(d)	isochoric process.			
7		emperature above which a g	as is heate	ed up when subjected to Joule-Thomson expansion			
. 8	Which	of the following is the crit	erion for e	quilibrium ?			
+5	(a)	$\Delta S_{T,P} = 0.$	(b)	$\Delta S_{P,V} = 0.$			
	(c)	$\Delta S_{T,V} = 0.$	(d)	$\Delta S_{U, V} = 0.$			
9				emblies which are independent of each other but			
10	An ele	An electron is an example of:					
	(a)	Boltzmannon.	(b)	Boson.			
	(c)	Fermion.	(d)	Maxwellon.			

- 11 The equilibrium constant of a reaction increases with:
 - (a) increase in temperature if ΔH is positive.
 - (b) decreasae in temperature if ΔH is positive.
 - (c) cannot be predicted.
 - (d) can be predicted only with more data.
- 12 For the equilibrium,

$$Ca CO_3(S) \rightleftharpoons CaO(s) + CO_2(g),$$

the equilibrium constant Kp is equal to -

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

- II. Answer all the questions. Each carries a weightage of 1:
 - 13 Account for the influence of pressure on the melting point of ice using the Le Chatlier principle
 - 14 What is Stirling's approximation?
 - 15 Classify the following properties into intensive and extensive:

Pressure, Volume, Enthalpy, Molar Heat capacity.

- 16 Calculate the work done when 14 g of nitrogen gas expands isothermally and reversibly from 2 L to 20 L at 27° C assuming ideal behaviour.
- 17 Name two substances for which the entropy is not zero to zero Kelvin. Explain the reason for the same in one of the substances.
- 18 Explain the use of viscosity measurements to determine the molecular mass of a substance
- 19 What is optical exaltation? Give an example.
- 20 Calculate the average velocity of SO₂ gas at 300 K.
- 21 What is compressibility factor of a gas? How can it be used to study the non-ideal nature of the gas?

 $(9 \times 1 = 9 \text{ weightage})$

- III. Answer any five questions. Each carries a weightage of 2:
 - 22 Derive the van der Waal's equation of state and show how it can expalin the PV-P graphs of real gas.
 - 23 Define parachor. Discuss its use in structure elucidation with suitable examples.
 - Derive thermodynamically the relation between C_p and C_v . Show that it reduces to $C_p C_v = R$ for an ideal gas.
 - 25 The vapour pressure of ethanol at 40°C is 135 torr and at 70°C is 542 torr. Calculate the molar heat of vaporisation of ethanol.

- 26 Discuss the criteria of reversible and spontaneous processes.
- 27 Calculate the rotational partition function of hydrogen at 400 K if its moment of inertia is $4.6 \times 100^{-48} \text{ kg m}^2$.
- 28 The equilibrium constant K_c for the dissociation of hydrogen iodide,

$$\mathrm{HI}(g) \mathop{\rightleftharpoons} \frac{1}{2} \mathrm{H}_2(g) + \frac{1}{2} \, \mathrm{I}_2(g),$$

is 0.134. Calculate the amount of HI remaining at equilibrium when started with 12.8g of HI. $(5 \times 2 = 10 \text{ weightage})$

- IV. Answer any two questions. Each question carries a weightage of 4:
 - 29 (a) Derive the van't Hoff reaction isotherm. How can it be used to predict the feasibility of a
 - (b) Obtain the relation; (i) between partition function and energy; and (ii) between partition function and pressure.
 - 30 Discuss the Carnot cycle and derive the expression for the efficiency of a reversible engine. State the Carnot theorem.
 - 31 (a) Explain the use of limiting density method to determine the molecular mass of a gas. What is the advantage of the method?
 - (b) Calculate the coefficient of viscosity of hydrogen gas at 273 K given that its density is 8.9×10^{-2} kg m⁻³ and mean free path is 1.78×10^{-7} m.

 $(2 \times 4 = 8 \text{ weightage})$