in.	n	-	a	-
	53	\mathbf{a}	n	2
-	ж.	9	v	•

100				
/TD	1	ges	-	01
1.00	-24	5342452		25.0
	.50	Par Contract		21

Name.	

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, OCTOBER 2012

(CCSS)

Physics

AP 5B 13/PH 5B 11-PHYSICAL OPTICS AND MODERN OPTICS

Three Hours

Maximum: 30 Weightage

Section A

Answer all questions.

- Path difference corresponding to a phase difference of 270° is:
 - (a) Zero.

(b) $\frac{\lambda}{2}$.

- (d) \(\lambda\).
- Colours appear on a thin film and on soap bubble due to:
 - (a) Refraction.

(b) Dispersion.

(c) Interference.

- (d) Diffraction.
- If biprism set up in air is immersed in water, then width of interference fringes will be:
 - (a) Same.

(b) Decreased.

(c) Increased.

- (d) Unpredicted.
- A diffraction gratting 0.15 m surface ruled with 6×10^5 lines/m. Then resolving power in the first
 - (a) 9 x 104

(b) 6 x 105.

(c) 4 × 106.

(d) 2 × 104.

- Velocity of E-ray is:
 - (a) Different in different direction.
 - (b) Minimum along optic axis.
 - (c) Maximum at right angles to direction of optic axis.
 - (d) All the above statements are correct.
- The light ray incident at an angle of incidence greater than acceptance angle on a step index fiber, the ray will be:
 - (a) Refracted through cladding.
 - (b) Totally internally reflected through core.
 - (c) Totally internally reflected through cladding.
 - (d) Neither reflection nor refraction.

Turn over

- 7. The form of translation matrix through a medium of refractive index n through distan D is ———.
- 8. Define resolving power.
- 9. What is meant by double refraction?
- 10. Give one example for positive crystal and one for negative crystal.
- 11. What is meant by gratting element?
- 12. An excessively thin film in reflected light appears :
 - (a) Dark.

(b) Bright.

(c) Coloured.

(d) No colour.

 $(12 \times \frac{1}{4} = 3 \text{ weightag})$

Section B

Answer all questions.

- 13. Develope a (2 × 2) translation matrix.
- 14. What are the conditions for sustained interference pattern?
- 15. What are Newton's rings? How are they formed?
- Distinguish between a zone plate and a convex lens.
- 17. Define specific rotation.
- 18. Give the principle of non-reflecting films.
- 19. Distinguish between step index fiber and graded index fiber.
- 20. Give the reason for colour of thin films.
- 21. Discuss interference pattern with white light.

 $(1 \times 9 = 9 \text{ weightage})$

Section C

Answer any five questions.

- 22. The distance between the slit and biprism and between the biprism and the screen are 50 cm each. The angle of biprism is 179° and refractive index 1.5. If the distance between successive fringes 0.0135 cm. Calculate wavelength of light used.
- 23. What is a Gabor hologram? How it is constructed?
- 24. What is a zone plate? Explain its working and use.
- 25. Derive expression for resolving power of gratting.
- 26. Calculate the minimum thickness of a plate if O-ray and E-ray coming out mixed up to form plan polarised light. λ = 6000 Å μ_E = 1.562 λ_O = 1.552.

Light containing two wavelengths λ_1 and λ_2 falls normally on a plano-convex lens of radius or curvature R resting on glass plate. If the n^{th} dark ring conincides with $(n+1)^{\text{th}}$ dark ring due to λ_2 .

Prove that radius of n^{th} dark ring due to λ_1 is $\sqrt{\frac{\lambda_1\lambda_2}{\lambda_1-\lambda_2}}$.

In a Michelson's interferometer 200 fringes cross the field of view when movable mirror is displaced through 0.0589 mm. Calculate the wavelength of monochromatic light used.

 $(2 \times 5 = 10 \text{ weightage})$

Section D

Answer any two questions.

- Describe the phenomenon of double refraction in uni-axial crystals. How is it explained by Hygen's theory?
- Discuss Fraunhofer diffraction due to a single slit.
- Obtain system matrix for a thick lens and hence obtain the formula for a thin lens.

 $(2 \times 4 = 8 \text{ weightage})$