Name.	************************************
Res N	io.

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2019

(CUCBCSS)

Chemistry

CHE 6B 11—PHYSICAL CHEMISTRY - III

Time: Three Hours

Maximum: 80 Marks

Section A

Answer all questions.

Answer in one word or sentence.

1.	pH is defined as ———.
2.	Two examples of buffer solutions are ———.
3.	Example of a sparingly soluble salt is ———.
4.	Calculate the cell constant of M/10 solution of KCl at 291 K whose specific conductance is $0.0112~S~cm^{-1}$ and resistance when contained in conductivity cell is 55 Ohms.
5 .	Example of a salt of weak acid and weak base is ———.
6.	Example of a galvanic cell is ———.
7.	The distance ratio d_{100} : d_{110} : d_{111} planes in case of simple cubic lattice is ————.
8.	An example each of (a) tetragonal; and (b) triclinic systems are ————.
9.	A crystal planes makes intercepts $\frac{1}{2}a$, $\frac{1}{2}b$ and $\frac{3}{2}c$. What are the miller indices of the plane?
0.	The hydronium concentration of a solution having pH = 4.6990 is ————.

Section B

Answer any ten questions. Each carries 2 marks.

- 11. Sketch the Calomel electrode and give the electrode reaction.
- 12. The solubility product of AgCl at 298 K is 1.7×10^{-10} mol² dm⁻⁶. Calculate the solubility of AgCl.
- 13. What is meant by specific conductance? How does it vary with dilution?
- 14. Derive Henderson equation for Basic Buffer.
- 15. Discuss briefly Hydrogen-Oxygen fuel cell.

Turn over

 $(10 \times 1 = 10 \text{ marks})$

- Write S.N. on concentration cent within
- Discuss briefly Schottky defect. 17.
- Name one example each of acidic and basic buffer.
- What is meant by ionic product of water? What is its value at 303 K? 18. 19.
- 20.
- Calculate the degree of hydrolysis of 0.05 M Potassium acetate in a 0.05 M ageous solution of 298 K (K_a of acetic acid = 1.8 × 10⁻⁵ K_w = 1 × 10⁻¹⁴). 21.
- Calculate the e.m.f. at 25°C of the cell $\operatorname{Zn}(s) \left| \operatorname{Zn}^{+2} \left(0.1 \, \mathrm{M} \right) \right| \left| \operatorname{Ag}^{+} \left(0.1 \, \mathrm{M} \right) \right| \operatorname{Ag}(s)$. 22.

Given :
$$E^{0}Zn^{+2}$$
 $Zn = -0.76V$; $E^{0}Ag^{+}$ $Ag = 0.80V$.

$$(10\times2=20)$$

Section C

Answer any five questions. Each carries 6 marks.

- 3. Define molal depression constant. Calculate the freezing point of a solution prepared by di 3.42 g of Sucrose, (molar mass = 342) in 50 g of water ($K_f = 1.86$ K Kg mol⁻¹).
- 4. Explain the utility of the values of standard electrode potentials.
- 5. Write S.N. on Bravis lattices.
- Discuss briefly intrinsic and extrinsic semi conductors with an example each. 6.
- 7. How are liquid crystals classified ?
- 8. State and explain Faraday's laws.
- 9. Discuss briefly Electrochemical theory of corrosion of metals.
- 0. State and explain Kohlrausch's law and explain one of its applications.

$$(5 \times 6 =$$

Section D

Answer any **two** questions. Each carries 10 marks.

- (a) Define solubility product. How is solubility and solubility product of a sparingly determined?
 - (b) Write S.N. as liquid junction potential.

- a) State Henry's law. What are its applications?
- Discuss briefly conductometric titration of a weak acid against strong base and strong acid against weak base. What are the advantages of conductometric titrations?
 - State and explain law of rational indices. Explain miller indices of a plane and how are miller indices obtained.
 - Write S.W. on powder diffraction method.
- Write S.N. on Calomel electrode and quinhydrone electrode.
- Explain Debye-Hückel Onsager equation for strong electrolytes.

 $(2 \times 10 = 20 \text{ mar})$