\sim	62623	h
•	に リに リン	2

(Pages: 3)

Name.....

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2019

(CUCBCSS-UG)

Mathematics

MAT 2C 02-MATHEMATICS

Time: Three Hours

Maximum: 80 Marks

Part A (Objective Types)

Answer all twelve questions.

- 1. Define a sequence.
- 2. Fill in the blanks: $\frac{d}{dx} \cosh^3(3x) =$ ______.
- 3. For what values of real numbers x, does the series $\sum_{n=1}^{\infty} \sin^n x$ converge?
- 4. Fill in the blanks: The polar equation of the circle with centre origin and radius a is -
- 5. Find the n^{th} term of the sequence 2, -2, 2, -2 ---
- 6. Fill in the blanks: If $f(x, y) = 1 \sinh(1 xy)$, then $f_x(1, 1) = \frac{1}{2}$
- 7. Fill in the blanks: If f is continuous on (a,b), then $\lim_{c \to b} \int_{a}^{c} f(t) dt =$
- 8. Write explicitly the ratio test for the convergence of the series $\sum_{n=0}^{\infty} a_n$.
- 9. State alternating series test of Leibniz.
- 10. Define $\frac{\partial}{\partial x} f(x, y)$ using limit.
- 11. The power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ always converges to a_0 when x = -
- 12. What do you mean by linearization of a function in two variables at a point.

12 × 1 = 12 marks

Part B (Short Answer Types)

Answer any nine questions.

13. Evaluate
$$\int_{0}^{1} \sinh^{2} x \, dx$$
.

- 14. Test the convergence of the integral $\int_{0}^{\frac{1}{2}} \frac{1}{1-2x} dx$.
- 15. State the non-decreasing sequence theorem,
- 16. Describe the level surface of the function $f(x,y,z) = \sqrt{x^2 + y^2 + z^2 1}$.
- 17. Graph the sets of points whose polar co-ordinates satisfy the condition $0 \le r \le 2$.
- 18. Evaluate $\int_{0}^{1} \frac{3dx}{\sqrt{4+9x^2}}$.
- 19. Find $\tanh x$, if $\cosh x = \frac{17}{15}$, x > 0.
- 20. Show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ if $f(x, y) = \log \sqrt{x^2 + y^2}$.
- 21. Find a cylindrical co-ordinate equation for the surface $x^2 + (y-3)^2 = 9$.
- 22. Find $\frac{\partial z}{\partial r}$ if z = x + 2y, $x = \frac{r}{s}$ and y = 2rs.
- 23. Find $\lim_{n\to\infty} \frac{n}{2n+1}$.
- 24. Write the Maclaurin series for $\sin x$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Types)

Answer any six questions.

- 25. Find the length of the curve $y = \frac{2\sqrt{2}}{3}x^{\frac{3}{2}} 1$ from x = 0 to x = 1.
- 26. Find the limit of the function $f(x,y) = \frac{x^2 xy}{\sqrt{x} \sqrt{y}}$ as (x,y) tends to (0,0).

- 27. Replace the polar equation $r = \frac{4}{2\cos\theta \sin\theta}$ by equivalent Cartesian equation and the draw the graph in Cartesian form.
- 28. Find a power series for $\log (1 + x)$ and find the radius of convergence of that series.
- 29. Show that $\tanh^{-1} x = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right)$.
- 30. Find the volume of the solid of revolution when the region between the parabola $x = y^2 + 1$ and the line x = 3 is revolved about the line x = 3.
- 31. Find the sum of the series $\sum_{n=1}^{\infty} \frac{2^n 1}{4^n}.$
- 32. Find the radius and interval of convergence of the series: $\sum_{n=0}^{\infty} (-1)^n (2x-1)^n.$
- 33. Evaluate: $\int \frac{\cosh^4 \sqrt{x}}{\sqrt{x}} dx.$

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Types)

Answer any two questions.

- 34. Show that the function $f(x,y) = \frac{2xy}{x^2 + y^2}$ when $(x,y) \neq (0,0)$ and 0, otherwise is continuous everywhere except at the origin.
- 35. (a) Find the linearization of the function $f(x,y) = x^2 xy + y^2/2 + 3$ at (3, 2).
 - (b) Find the area of the region enclosed by the cardioid : $r = 2(1 + \cos \theta)$.
- 36. Find the area of the surface generated by revolving the curve $y = x^3/9$, $0 \le x \le 2$ about the x-axis. $(2 \times 10 = 20 \text{ marks})$