FIRST SEMESTER B.Sc. DEGREE EXAMINATION, JANUARY 2013

(COSS)
Statistics-Complementary Course ST 1C 01-PROBABILITY THEORY

Time : Three Hours

Maximum : 30 Weightage
I. Objective type questions. Answer all twelve questions:

1 A single letter is selected at random from the word "PROBABILITY". The probability that it is vowel is :
(a) $\frac{2}{11}$.
(b) $\frac{3}{11}$.
(c) $\frac{4}{11}$.
(d) None of these.

2 For any two events A and B, the value of $P(A \cap B)+P(\bar{A} \cup \bar{B})$ is :
(a) Equal to one.
(b) Less than one.
(c) Greater than one.
(d) Greater than or equal to one.

3 If $\mathrm{P}(\mathrm{A})=x, \mathrm{P}(\mathrm{B})=y$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=z$, then $\mathrm{P}(\overline{\mathrm{A}} \cup \mathrm{B})=$
(a) $1-x-y+z$.
(b) $1-x+y$.
(c) $1-y+z$.
(d) $1-x+z$.

4 If A and B are mutually exclusive events, then $P(A \cup B)=$
(a) $\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
(b) 0 .
(c) $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$.
(d) $\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B} \mid \mathrm{A})$.

5 For any two events A and B each with positive probabilities, $P(A \mid B)$ is :
(a) $<\mathrm{P}(\mathrm{A})$.
(b) $>\mathrm{P}(\mathrm{A})$.
(c) $\leq \mathrm{P}(\mathrm{A})$.
(d) $\geq P(A)$.

6 If X is a continuous random variable, then $\mathrm{P}(a<\mathrm{X}<b)$:
(a) $<\mathrm{P}(a<\mathrm{X} \leq b)$.
(b) $>\mathrm{P}(a<\mathrm{X} \leq b)$.
(c) $<\mathrm{P}(a \leq \mathrm{X} \leq b)$.
(d) $=\mathrm{P}(a \leq \mathrm{X} \leq b)$.

7 For any reals $x<y$, the distribution function F of a random variable X statistics the inequality :
(a) $\mathrm{F}(x)<\mathrm{F}(y)$.
(b) $\mathrm{F}(x)>\mathrm{F}(y)$.
(c) $\mathrm{F}(x) \leq \mathrm{F}(y)$.
(d) $\quad \mathrm{F}(x) \geq \mathrm{F}(y)$.

8 If X is a non-negative continuous random variable, the range of $E(X)$ is :
(a) $(-\infty, \infty)$.
(b) $(0,1)$.
(c) $[0,1]$.
(d) $[0, \infty]$.

9 If X is a random variable with mean μ and variance σ^{2}, then $\mathrm{E}(\mathrm{X}-b)^{2}$ is minimum when $b=$.
(a) 0 .
(b) 1 .
(c) μ.
(d) σ^{2}.

10 If the third central moment is positive, then the curve is :
(a) Symmetric.
(b) Positively skewed.
(c) Negatively skewed.
(d) U-shaped.
11. If X assumes only positive values, then $\mathrm{E}\left(\mathrm{X}^{1 / 2}\right)$ is :
(a) $=[E(X)]^{1 / 2}$.
(b) $<[E(X)]^{1 / 2}$.
(c) $>[\mathrm{E}(\mathrm{X})]^{1 / 2}$.
(d) $\leq[E(X)]^{1 / 2}$.

12 The measure of Kurtosis β_{2} is always:
(a) >1.
(b) <1.
(c) ≥ 1.
(d) ≤ 1.
II. Short answer type questions. Answer all nine questions :

13 Define Sample space.
14 What are the limitations of statistical definition of probability.
15 State addition theorem of probability.
16 Define conditional probability.
17 Define distribution function of a random variable.
18 Define Central moments.
19 What is Kurtosis?
20 State the necessary and sufficient conditions for a function to be a characteristic function.
21 Distinguish between discrete and continuous type random variables.
$(9 \times 1=9$ weightage $)$
III. Short essay or paragraph questions. Answer any five questions :

22 Distinguish between equally likely events and independent events.
23 Is pair-wise independence implies mutual independence? Justify your claim.
24 Examine whether the following is a distribution function :

$$
F(x)=\left\{\begin{array}{lc}
0, & x<-2 \\
1 / 2\left(\frac{x}{2}+1\right), & -2 \leq x \leq 2 \\
1, & x>2
\end{array}\right.
$$

Also find its probability density function.
25 State and establish the multiplication theorem of expectation.
26 If X_{1} and X_{2} are independent random variables, show that $\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}-X_{2}\right)$.
27 Obtain the relationship between raw moments and central moments.
28 State and establish any two properties of characteristic function.
($5 \times 2=10$ weightage)
IV. Essay questions. Answer any two questions :

29 Out of 1000 persons born only 900 reach the age of 15 , and out of every 1,000 who reach the age of 15,950 reach the age of 50 . Out of every 1,000 who reach the age of 50 , forty die in one year. What is the probability that a person would attain the age of 51 years?
30 State and establish Bayes theorem for a finite number of events.
31 (a) Define characteristic function of a random variable X . Find the characteristic function of $\mathrm{Y}=\frac{\mathrm{X}-\mu}{\sigma}$ in terms of the characteristic function of X (where $\mu \in \mathrm{R}=(-\infty, \infty)$ an $\sigma>0$).
(b) Show that the characteristic function of the sum of two independent random variables is the product of their characteristic functions.

