Name	 		
	**********	-	

Reg. No.

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017

(CUCBCSS-UG)

Mathematics

MAT 1B 01-FOUNDATIONS OF MATHEMATICS

Time : Three Hours

Maximum: 80 Marks

Part A (Objective Type)

Answer all twelve questions. Each question carries 1 mark.

- 1. Find the number of elements in the power set of (days of the week).
- 2. Find A B for the sets A = (1, 2, 3, 4), B = (3, 4, 5, 6, 7)
- 3. Give an example of relation R on A = (1, 2, 3) which is transitive but $R \cup R^{-1}$ is not transitive.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 + 2x$. Then $(f \circ f)(2)$ is:
- 5. Find the domain of the real valued function $f(x) = \frac{1}{x-2}$.
- 6. Define a denumerable set.
- 7. If the graph of a function is symmetric about the origin, then the function is an
- 8. The graph of $y = x^2$ is shifted 2 units to the left and 2 units up, write the equation of the negraph.
- 9. Find $\lim_{x \to 1} \frac{x^2 1}{x 1}$.
- Write the negation of "This is a boring course".
- 1. What is the truth value of $\forall x (x^2 \ge x)$ if the domain consists of all real numbers.
- State which rule of inference is the basis of the argument "It is below freezing now. Therefore either below freezing or raining now".

 $(12 \times 1 = 12 \text{ ms})$

Turn

Part B (Short Answer Type)

Answer any nine questions. Each question carries 2 marks.

- 13. If $A = \{a, b, c, d\}$ and $B = \{y, z\}$. Find $A \times B$ and $B \times A$.
- 14. Let R be a relation on A = {1, 2, 3} defined by R = {(1, 1), (1, 2), (2, 3), (3, 1), (3, 2)} Find R^c and R⁻¹.
- 15. Find all partitions of $S = \{1, 2, 3\}$.
- 16. Let $S = \{-1, 0, 2, 5\}$ find f(S) where $f(x) = \begin{bmatrix} x \\ 5 \end{bmatrix}$.
- 17. Find the inverse of the function $f(x) = \frac{2x-3}{5x-7}$.
- 18. Let the functions f and g be defined by $f(x) = x^2 + 3x + 1$ and g(x) = 2x 3. Find (a) $f \circ g$; and (b) $g \circ f$.
- 19. For the function $f(x) = \begin{cases} 0 & x \le 0 \\ \sin \frac{1}{x} & x > 0 \end{cases}$ find $\lim_{x \to 0} f(x)$ or explain why they do not exist.
- 20. Evaluate $\lim_{x \to 1} \frac{x^2 + x 2}{x^2 x}$.
- 21. If $\lim_{x \to 0} f(x) = 1$ and $\lim_{x \to 0} g(x) = -5$ find $\lim_{x \to 0} \frac{2f(x) g(x)}{(f(x) + 7)^{2/3}}$.
- 22. Determine whether these biconditions are true or false:
 - (a) 2+2=4 if and only if 1+1=2.
 - (b) 0 > 1 if and only if 2 > 1.
- 23. Compare the terms Tautology and Contradiction.
- 24. Show that $\neg (p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Type)

Answer any six questions. Each question carries 5 marks.

25. Let \mathbf{R}_1 and \mathbf{R}_2 be relations on a set A represented by the matrices :

$$\mathbf{M_{R_1}} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \end{bmatrix} \text{ and } \mathbf{M_{R_2}} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Find the matrices representing:

- Suppose & is a collection of relations S on a set A and let T be the intersection of relations S, th is $T = \bigcap \{S \mid S \in \mathcal{E}\}$. Prove that if S is transitive, then T is transitive.
- Show that P × P is denumerable, where P is the set of all positive integers.
- Let R be the relation on P defined by the equation x + 3y = 12.
 - Write R as a set of ordered pairs.
 - Find (i) Domain of R; (ii) Range of R; and (c) R-1.
- Find the continuous extension to x = 2 of the function $f(x) = \frac{x^2 + x 6}{x^2 4}$.
- Show that if $\lim_{x\to c} |f(x)| = 0$ then $\lim_{x\to c} |f(x)| = 0$.
- Show that $\forall x (P(x) \land Q(x))$ and $\forall x P(x) \land \forall x Q(x)$ are logically equivalent.
- Show that the hypothesis $(p \land q) \lor r$ and $r \to s$ imply the conclusion $p \lor s$.
- 32. Prove that "If n is an integer and n^2 is odd then n is odd".

34. Consider the following five relations on the set $A = \{1, 2, 3, 4\}$:

sider the following five relations on the set
$$A = \{1, 2, 3, 4\}$$
:
 $R_1 = \{(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)\}$; $R_2 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$;

$$R_3 = \{(1, 3), (2, 1)\}$$
; $R_4 = \emptyset$, empty relation; $R_5 = A \times A$.

Determine which of the relations are :

(a) Reflexive.

(b) Symmetric

(c) Antisymmetric.

Transitive. (d)

35. Let
$$f(x) = \begin{cases} 3-x & x < 2\\ \frac{x}{2}+1 & x > 2 \end{cases}$$

- (a) Find $\lim_{x\to 2^+} f(x)$ and $\lim_{x\to 2^-} f(x)$.
- Does $\lim_{x\to 2} f(x)$ exist? If so what is it? If not, why not?
- Find $\lim_{x\to 4^-} f(x)$ and $\lim_{x\to 4} f(x)$.
- Does $\lim_{x\to 4} f(x)$ exist? If so what is it? If not, why not?
- Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent.

 $(2 \times 10 = 20 \text{ m})$