SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2018

(CUCBCSS-UG)

Complementary Course

MAT 2C 02-MATHEMATICS

Time: Three Hours

Maximum: 80 Marks

Part A (Objective Type)

Answer all twelve questions, Each question carries 1 mark.

- 1. Write an example for a sequence which has no upper bound.
- Find the domain of the function w = xy ln z.
- 3. Define the level surface of a function f.
- 4. State two path test for non-existence of limit.
- 5. If $\sum\limits_{n=1}^{\infty}\left|a_{n}\right|$ converges then $\sum\limits_{n=1}^{\infty}a_{n}$.
- 6. $\frac{d}{dx} \sinh x =$
- 7. Write tanh x in terms of exponential function.
- 8. Find $\lim_{n\to\infty} \sqrt[n]{n}$.
- 9. \(\cosh 2x = ----
- 10. Find $\lim_{(x,y)\to(1,1)} \frac{x^2+2y}{3x-2}$.
- 11. Find $\frac{\partial}{\partial x} \sin 2xy$.
- 12. Define conditional convergence of a series.

 $(12 \times 1 = 12 \text{ n})$

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

- 13. Investigate the convergence of $\int_0^{\infty} e^{-x^2} dx$.
- 14. Show that $\lim_{n\to\infty} k = k$, where k is a constant.

Tur

15. Find
$$\lim_{n \to \infty} \frac{\cos n}{n}$$
.

16. Find
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$$
.

- 17. Show that the function $f(x, y) = \frac{2x^2y}{x^4 + y^2}$ has no limit as (x, y) approaches (0, 0).
- 18. Find $\frac{\partial f}{\partial y}$ if $f(x, y) = y \sin xy$.
- 19. Use chain rule to find the derivative of w = xy with respect to t along the path $x = \cos t$, y = s. What is the derivative's value at $t = \pi/2$?
- Find the volume of the solid generated by revolving the region between the parabola x = y² + 1
 the line x = 3 about the line x = 3.
- 21. Show that if u is a differentiable function of x whose values are greater than 1, $\frac{d}{dx}(\cosh^{-1}u) = \frac{1}{\sqrt{u^2-1}}\frac{du}{dx}$.
- 22. Graph the sets of points whose co-ordinates satisfies the condition $2\pi/3 \le \theta \le 5\pi/6$ (no restriction on r).
- 23. Find a polar equation for the circle $x^2 + (y 3)^2 = 9$.
- 24. Find the directrix of the parabola $r = \frac{25}{10 + 10\cos\theta}$

$(9 \times 2 = 18 \text{ ma})$

Part C (Short Essay Type)

Answer any six questions.

Each question carries 5 marks.

- 25. Compare $\int_{1}^{\infty} \frac{dx}{x^{2}}$ and $\int_{1}^{\infty} \frac{dx}{1+x^{2}}$ with limit comparison test,
- 26. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ convergent or divergent.
- 27. Find the linearization of the function $f(x, y) = x^2 + y^2 + 1$ at (0, 0).
- 28. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x^2 + y^2$, x = r s and y = r + s.
- 29. Find the area of the region in the plane enclosed by the cardioid r=2 $(1+\cos\theta)$.
- 30. Show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$ if $f(x, y, z) = e^{3x+4y} \cos 5z$.

- Find the Maclaurin series for the function $f(x) = xe^x$.
- Does series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$ convergent.
- 33. Find the surface area generated by revolving the curves $x = t + \sqrt{2}$, $y = \frac{t^2}{2} + \sqrt{2t}$, $-\sqrt{2} \le t \le \sqrt{2}$ about $(6 \times 5 = 30 \text{ marks})$ y-axis.

Part D (Essay Type)

Answer any two questions. Each question carries 10 marks.

- Find the length of the curve $y = \frac{1}{3}(x^2 + 2)^{3/2}$ from x = 0 to x = 3.
- Find the points of intersection of $r^2 = 4 \cos \theta$ and $r = 1 \cos \theta$.
- 36. Find the critical points of $f(x) = x^{1/3}(x-4)$. Identify the intervals on which f is increasing and decreasing. Find the functions's local and absolute extrema values. $(2 \times 10 = 20 \text{ marks})$