Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2017

(CUCBCSS-UG)

Complementary Course

PHY 2C 02-MECHANICS, RELATIVITY, WAVES AND OSCILLATIONS

ne : Three Hours

Maximum: 64 Marks

Symbols used in this question paper have their usual meanings.

Section A

(Answer in a word or phrase)
Answer all questions. Each question carries 1 mark.

- 1. Which of the following relations between force \vec{F} and potential energy V is correct:
 - (a) $\vec{F} = -\text{grad } V$.

(b) F̄ = − div V.

(c) $\vec{F} = -\text{curl } V$,

- (d) $\vec{F} = -\int v \, dx$.
- The rest mass of particle is m₀. If it moves with velocity v ,its mass becomes m, then:
 - (a) $m = m_0$.

(b) $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$

(c) $m = m_0 \sqrt{1 - \frac{v^2}{c^2}}$.

- (d) $m = \frac{m_0}{1 \frac{v^2}{c^2}}$
- The rest mass of a particle is zero; then its relation between momentum (p) and energy (E) is:
 - (a) $E = \frac{p^2}{2m}$.

(b) E = pc.

(c) $E = \frac{p}{c^2}$.

(d) $E = pc^2$.

Turn over

4.	What do you mean by energy density?			
5.	A Physical system is invariant under rotation about a fixed axis. Then the following quant conserved ————.			
	(a)	Linear momentum.	(b)	Angular momentum.
	(c)	Kinetic energy.	(d)	Potential energy-
6.	The deviation of a freely falling body from the vertical in northern hemisphere is towards:			
		East.		West.
	(c)	South.	(d)	Zero.
7.	The rest mass of an electron is m0 when it moves with a velocity $v = 0.6c$, then its rest mass			
	(a)	m_0 .	(b)	$\frac{5}{4}m_0$.
	(c)	$\frac{4}{5}m_0$.	(d)	$2m_0$.
8.	Earth is :			
	(a)	An inertial frame.	(b)	A non-inertial frame.
	(e)	An absolute frame.	(d)	Inertial and rotational.
9.	The graph between square of period and the length of simple pendulum is a :			
	(a)	Straight line.	(b)	Circle.
	(e)	Parabola.	(d)	Hyperbola.
10.	The time interval between two events in rest frame is Δt . If it is measured from a moving fit it is $\Delta t'$, then:			
	(a)	$\Delta t' = \Delta t$.	(b)	$\Delta t' < \Delta t$.

(d) $\Delta t' = \sqrt{2} \Delta t$,

(c) $\Delta t' > \Delta t$.

(10 × 1 = 10 ms

Section B

(Answer in a short paragraph-three or four sentences) Answer all questions. Each question carries 2 marks.

- 11. What do you mean by length contraction?
- 12. State the law conservation of angular momentum.
- 13. Write a short note on Corioli's force.
- 14. Explain the significance of mass energy relation.
- 15. Write Galielean transformations for space and time.
- 16. Distinguish between transverse and longitudinal waves.
- 17. Explain the properties of a wavefunction.

 $(7 \times 2 = 14 \text{ marks})$

Section C

(Answer in a paragraph of about half a page to one page)
Answer any three questions. Each question carries 4 marks.

- 18. What are the postulates of quantum mechanics ?
- 19. Show that the curl of a conservative force vanishes.
- Show that when v/c<<1, the Lorentz transformation equations get converted to the Galilean transformation equations.
- 21. Explain the working of an electron microscope.
- 22. Prove that a moving clock always runs slower than a clock at rest.

 $(3 \times 4 = 12 \text{ marks})$

Section D

(Problems- write all relevant formulas. All important steps carry separate marks)

Answer any three questions. Each question carries 4 marks.

- 23. Calculate the length of the rod moving with velocity 0.8c. Given proper length of the rod= 100cm.
- 24. Find the mass of electron and kinetic energy of an electron moving with a velocity is 0,99c.
- 25. A body having a mass of 4g executes S.H.M. The force acting on the body when the displacement is 8 cm is 24g. Find the period. If the maximum velocity is 500cm/s, find the amplitude and maximum acceleration.
 Turn over

- 26. A pendulum is of length 50cm. Find its period when it is suspended in :
 - (i) A stationary lift.
 - (ii) A lift falling at a constant acceleration of 2 m/s².
- 27. A mass of 50g is moving with linear velocity of 100 cm/s normal to the axis of rotation in a rotatin frame of reference. The mass is at a distance of 10 cm from the axis of rotation. Calculate th Coriolis force experienced by the mass.

 $(3 \times 4 = 12 \text{ marks})$

Section E

(Essays - Answer in about two pages)

Answer any two questions. Each question carries 8 marks.

- Derive the time dependent Schrodinger equation of matter waves. Give the Physical interpretation
 of wave function
- 29. Mention the consequences of Special theory of relativity and derive Einstein's mass energy relation.
- Derive the differential equation for a damped harmonic oscillator. Explain the three cases of damping and give the graphical representation.
- 31. Derive Lorentz transformation equations.

 $(2 \times 8 = 16 \text{ marks})$