None			
variable.	*********	*************	
		A CONTRACTOR OF THE PARTY OF TH	-

Reg. No....

SECOND SEMESTER B.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION, MAY 2016

(UG-CCSS)

Complementary Course

PH 2C 03—MECHANICS, RELATIVITY WAVES AND OSCILLATIONS

ime : Three Hours

Maximum: 30 Weightage

Section I (Objective Type Questions)

Answer all questions.

Each question carries a weightage of 14.

- Write the Schrödinger's time-independent wave equation.
- 2. If a particle could move with the velocity of light, how much kinetic energy would it possess?
- 3. Write the expression for relativistic length of a body interms of its proper length.
- 4. "Under Galilean transformation, velocity remains invariant." Is this true?
- Force, which does not really act on the particle but appears due to the acceleration of the frame is called ———.
- The energy equivalent to 1 amu = ———— eV.
- 7. Freely falling bodies deviate from their true vertical path. This is due to the effect of
- 8. The angular momentum of a particle is conserved, if torque acting on th particle is -----
- 9. The working principle of Rocket is based on the law of conservation of :
 - (a) Linear momentum.
- (b) Energy.
- (c) Angular momentum.
- (d) Electric charge,
- 10. Which of the following is not an example for linear simle harmonic motion :
 - (a) Vibrations of atoms and molecules.
 - (b) Vibrations of a tuning fork.
 - (c) Oscillations of a simple pendulum.
 - (d) Oscillations of a freely suspended magnet in a uniform magnetic field.
- 11. The pressure variation in the case of a longitudinal progressive wave travelling through a gas is

given by, $\left(\frac{dy}{dx}\right)$ is the volume strain:

(a)
$$P = -E \frac{dy}{dx}$$
.

(b)
$$P = \frac{-1}{E} \frac{dy}{dx}$$

(e)
$$P = +E \cdot \frac{dy}{dx}$$

(d)
$$P = \sqrt{E} \cdot \frac{dy}{dx}$$

Tuen over

- 12. The acceleration of a particle executing simple harmonic motion at any instant is :
 - (a) wx.

(b) − w²x.

(c) $u\sqrt{A^2-x^2}$.

(d) $uv\sqrt{A^2+x^2}$

 $(12 \times \% = 3 \text{ weights})$

Section II (Short Answer Type Questions)

Answer all the questions. Each question carries 1 weightage.

- 13. Distinguish between an inertial frame and non-inertial frame of references.
- 14. Define proper time interval.
- 15. Write the Galilean transformation equations.
- 16. What is quality factor associated with a damped harmonic oscillator?
- 17. Obtain the differential equation representing a simple harmonic motion.
- 18. What is meant by centre of mass frame of reference?
- 19. State Fourier's theorem.
- 20. Define eigen values and eigen functions.
- 21. "Simultaneity is relative." Explain.

 $(9 \times 1 = 9 \text{ weightsp})$

Section III (Short Essay/Paragraph Questions)

Answer any five questions.

Each question carries 2 weightage.

- 22. Show that in a central force field, the angular momentum of a particle is conserved.
- 23. Explain the working principle of an electron microscope.
- 24. If in air a planewave of frequency 256 Hz and amplitude ¹/₁₀₀₀ mm. is produced, calculate ⁵/₂ radiated energy per unit volume and the energy current velocity of sound = 332 m/s, density of s is 1.29 kg/m.³
- 25. Obtain the equation representing the oscillations of a loaded spring.
- 26. Check whether the following are eigen functions of the operator $\frac{d^2}{dx^2}$:
 - (a) $\sin x$; (b) e^x ; (c) $\sin^2 x$; (d) $\cos x$.
- 27 A particle of mass 1 kg, executes simple harmonic motion of amplitude 25 cm, and time period? Calculate its total energy and kinetic energy when x = 12.5 cm.
- 28. Calculate the rest energy of an electron in joules.

 $(5 \times 2 = 10 \text{ weights?})$

Section IV (Essay Questions)

Answer any two questions.

Each question carries 4 weightage.

- 29. Define angular momentum of a particle about a point. Derive a relation between the torque applied on a rotating body and its angular momentum. Hence state the law of conservation of angular momentum.
- Derive Einstein's mass-energy equivalence. Illustrate any two examples for mass-energy equivalence.
- 31. Arrive at the differential equation for a damped harmonic oscillator. Give its solution.

 $(2 \times 4 = 8 \text{ weightage})$