50	con r	V d
# CO-1	NO. 11	843
100		7-8

(Pages:3)

Nam	P	
	No	******

SECOND SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/ IMPROVEMENT) EXAMINATION, APRIL/MAY 2015

(UG-CCSS)

		Core	Course - Phy	/sics			
	PH 2B	03 - PROPERTIES C	F MATTER,	WAVES AND ACO	USTICS		
			-2012 Admiss				
Time : The	ree Hours				Maximum : 30 Weigh		
			Section I				
		Ansu	ver all questic	ons.			
1	. Which of th	e following substance	has the highe	st elasticity?			
	(a)	Steel.	(b)	Copper.			
	(c)	Rubber.	(d)	Sponge.			
2	. The breaking	The breaking stress for a wire of unit cross-section is called as:					
	(a)	Yield point.	(b)	Tensile strength.			
	(e)	Elastic fatigue.	(d)	Young's modulus.			
3	. The practic	The practical limits of Poisson's ratio lies between :					
	(a)	$-\infty$ to $+\infty$.	(b)	0 and 1.			
	(c)	0 and 1/2.	(d)	0 and -1.			
4	. The theoret	tical ratio of Poison's ra	atio lies betwe	en:			
	(a)	0 and ½.	(b)	-1/2 to + 1/2 .			
	(c)	1 and 1/2.	(d)	-1 and 1/2.			
5	. The total er	nergy of a particle exec	uting SHM is	proportional to the			
	(a)	Displacement from e	quilibrium po	sition.			
	(b)	Frequency of oscillati	ion.				
	(c)	Velocity in equilibriu	m position.				
	(d)	Square of amplitude	of motion.				
6	. What is the	length of seconds pend	dulum where	g = 9.8 m/s ² ?			
	(a)	0.78 m.	(b)	0.88 m.			
	(c)	0.992 m.	(d)	1.024 m.			

			700000000	all stor when the particle is half ways.
7.	The potenti	al energy U of a simple har	nonic os	cillator when the particle is half way to it
	(a)	U/4.	(b)	U/8-
	(c)	2 U/3.	(d)	3 U/2.
8.			ele execu	ting simple harmonic oscillation at the pos
		n displacement is:	75.0	Minimum.
		Zero.	(b)	
1400		Maximum.	1.00	Neither a maximum nor a minimum.
9.	Ripples on t	the surface of water is an ex	ample o	f:
	(a)	Longitudinal waves.	(b)	Non-mechanical waves.
	(c)	Transverse waves.	(d)	None of the above.
10.	If the particular then it is:	cles of a medium are in the	same p	hase of vibration at every point on a sur
	(a)	Longitudinal waves.	(b)	Wave front.
	(e)	Transverse waves.	(d)	Interference.
11.	Intensity of	sound has :		
	(a)	An objective existence.	(b)	A subjective existence.
	(c)	No existence.		All are true.
12.	Decibel is:			
	(a)	Musical instrument.	(b)	A measure of.
	(c)	Measure of sound level.	(d)	A measure of periodicity.
		Q		(12 × 1/4 = 3 weights
		Secti Answer all		
13:	Define Stree	ss and Strain.	Ameurio	TAN.
	State Hooks			

- 15. Why is a cantilever of uniform cross-section more likely to break near its fixed end?
- 16. What is meant by Periodic motion? Give an example.
- When will the motion of a simple pendulum be harmonic?
- 18. Give two important characteristics of wave motion.
- 19. Discuss the distribution of energy in a plane progressive wave.
- 20. State Fourier's theorem.
- 21. What is absorption Coefficient?

Section III

Answer any five questions.

- 22. A gold wire 3.2 × 10⁻⁴ m in diameter elongates by 10⁻³m when stretched by a force of 0.33 kgwt. Find the Young's modulus of the material if the length of the wire is 0.6 metre.
- 23. A wire 4 metre long and 3 × 10⁻⁴ m in diameter is stretched by a force of 8 kgwt. If the extension in length is 1.5 × 10⁻³ m, calculate the energy stored in the wire.
- Derive an expression for the couple per unit twist of a uniform solid cylinder.
- 25. A body having a mass of 4 × 10⁻³ kg executes SHM. The force acting on the body when displacement is 0.08 m is 24 × 10⁻³ kgwt. Find the period.
- 26. What are Lissaton's figures? How are they formed?
- 27. A source of sound has a frequency of 512 Hz and an amplitude of 25 × 10⁻⁴ m. What is the flow of energy across unit area per second? Density of air = 1.29 × 10⁶ kg/m³ and velocity of sound in air = 340 m/s.
- 28. A sitar wire is under a tension of 30 N and the length of the bridges is 0.8 m. If 10 m of the sitar wire weighs 2.2×10^{-3} kg, find (a) Speed of the transverse waves on the wire; (b) Fundamental frequency of vibration.

 $(5 \times 2 = 10 \text{ weightage})$

Section IV

Answer any two questions.

- 29. What is bending moment? Derive an expression for the depression at a point distant x from the fixed end of a cantilever.
- Derive an expression for the velocity of propagation of a transverse disturbance in a stretched string and hence deduce the law of transverse vibrations of strings.
- 31. How are ultrasonic waves experimentally produced? Describe a method to determine the velocity of ultrasonic waves through a liquid.

 $(2 \times 4 = 8 \text{ weightage})$