Name.....

Reg. No.....

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017

(CUCBCSS-UG)

Mathematics

MAT 3B 03-CALCULUS AND ANALYTIC GEOMETRY

Time : Three Hours

Maximum: 80 Marks

Part A (Objective Type)

Answer all twelve questions.

- 1. The product rule for natural logarithm is -
- $2. \quad \lim_{x\to 0} \frac{3x \sin x}{x} = \frac{1}{1-x}$
- The Hyperbolic cosecant is defined as —
- Let {a_a} be a sequence of real numbers. If a_a → L and if f is a function that is continuous at L and defined at all a, then -
- The series ∑_{n=1}ⁿ n² diverges because −
- 6. Suppose that $a_n > 0$ and $b_n > 0$ for all $\ge N$. If $\lim_{n \to \infty} \frac{a_n}{b} = 0$ and $\sum b_n$ converges then
- 7. The first two terms in the Maclaurin series expansion of $f(x) = xe^x$ is -
- 8. The first two terms in the expansion of $f(x) = \frac{1}{2}x\cos x$ is ______.
- The remainder of order n of R_n(x) in Taylor's Formula is ———.
- The eccentricity of the conic section $r = \frac{6}{2 + \cos \theta}$ is _____.
- The standard form of Hyperbola if e = 3 and vertices $(0, \pm 1)$ is —
- The foci of ellipse $.9x^2 + 10y^2 = 90$ is —

 $(12 \times 1 = 12 \text{ marks})$

Turn over

Part B (Short Answer Type)

Answer any nine questions.

- 13. Define Hyperbolic function and Exponential function.
- 14. Define natural logarithm. Give examples.
- 15. Find $\lim_{x\to 0} + \sqrt{x}$ in x.
- 16. Let ∑a_n ∑c_n and ∑d_n be series with non negative terms and suppose that for some in N, d_n ≤a_n ≤c_n, ∀n ≥ N. Then write the conditions for which the series ∑a_n converge diverges?
- 17. Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n^3}$ converges or diverges ?
- 18. Determine whether the Alternating series $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2+1}$ converges or diverges?
- 19. Define Power series representation of a function about the point x = a.
- 20. Find the power series representation of $f(x) = \sin x$ about x = 0.
- Define the radius of convergence of a power series.
- 22. Define eccentricity e of a conic section. Give examples.
- Write the polar equation of an ellipse.
- 24. Sketch the circle $r = 6 \sin \theta$.

 $(9 \times 2 = 1)$

Part C (Short Answer Type)

Answer any six questions.

- 25. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{2^n 1}$ converge or diverge?
- 26. Investigate the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n + 5}{3^n}$.

- 27. Determine whether the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n \cdot 3^n}$ converge or diverge?
- 28. Expand $f(x) = x^4 + x^2 + 1$ as Taylor series about a point $\alpha = -2$.
- 29. Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} x^n$.
- 30. Discuss about the convergence of Taylor series. Give examples.
- 31. Find the eccentricity and directrix of the parabola $r = \frac{25}{10 5 \cos \theta}$. Also sketch the conic.
- 32. Identify the conic section and hence find the centre, vertex, foci, asymptotes of x² + y² - 2x - 2y = 0.
- 33. Find the polar equation of : (i) $r \sin \theta = 2$, e = 1/2; (ii) $r \sin \theta = -6$, e = 1/3.

 $(6 \times 5 = 30 \text{ mar})$

Part D (Essay Type)

Answer any two questions.

34. Determine whether the series

(i)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2} \right)$$
 converge?

- (ii) Does the series $\sum_{n=1}^{\infty} \frac{(n+1)(n+2)}{n!}$ converge?
- 35. Find the values of x for which the replacement for $\sin x$ with an error of magnitude no than 3×10^{-4} is possible where $\sin x = x \frac{x^3}{3!} + \dots$
- 36. Describe about polar co-ordinates and polar equation of a conic. Sketch the region defined polar co-ordinate inequalities
 - (i) $0 \le r \le 6 \cos \theta$.
 - (ii) $-4\sin\theta \le r \le 0$.

 (2×10)