92583			-	-	99	0
	1	9	2	b	o	0

(Pages: 3)

Reg. No.

THIRD SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, NOVEMBER 2015

(UG-CCSS)

Core Course-Physics

PH 3B 05-MECHANICS

(2013 Admissions)

me : Three Hours

Maximum: 30 Weightage

Section A

Answer all questions.

Each question carries ¼ weightage.

- If a co-ordinate corresponding to a rotation is cyclic, rotation of the system about given axis remains invariant then the following quantity is conserved.
 - (a) Linear momentum.
- (b) Angular momentum.

- (c) Kinetic energy.
- (d) Potential energy.
- 2. In the case of elliptic orbits, the energy is proportional to:
 - (a) A.

(b) 1/a.

(c) 1/a2

- (d) 1/a³.
- 3. Lorentz transformations assume:
 - (a) Space and time are both relative.
 - (b) Space is relative.
 - (c) Space is absolute but time is relative.
 - (d) Space and time are both absolute.
- 4. Freely falling bodies deviate from their true vertical path due to the effect of :
 - (a) Gravitational force.
- (b) Centripetal force.

(c) Centrifugal force.

- (d) Coriolis force.
- 5. For a system of particles when the P.E. is translationally invariant then the momentum is:
 - (a) Conserved.

(b) Not conserved.

(c) Zero.

- (d) Infinite.
- 6. The shape of the galaxy is:
 - (a) Elliptical.

(b) Convex.

(c) Concave.

(d) Spherical.

Turn over

•		
	•	
		_
.,		

2	The en	cane velocity of a body p	rojected in the up	ward direction on the
8.4		9.8 km/hr.	(b)	11.2 km/hr.
	(c)	11.2 km/sec.	(d)	7.98 km/sec.
8	The for	ce on a point mass m pl	aced at the centre	e of a sphere is :
		Infinity.	(b)	4/3 Newtons.
		Zero.	(d)	9.8 Newtons.
9.		te motion is :		
	(a)	Imaginary.		
		Real.		
	(c)	Sometimes imaginary	and sometimes re	eal.
		None of these.		
10.	The m	aximum height attained	by a rocket is:	
	(a)		(b)	2R.
	(c)	3R.	(d)	4.3R.
11.	When	a particle moves under	the action of a cer	ntral force, its angular momentum is:
	(a)	Not conserved.	(b)	Conserved.
	(c)	Zero.	(d)	Infinite.
12.	Constr	aints which can be writ	ten in the form o	finequality are called:
	(a)	Holonomic.	(b)	Lagrangian.
	(e)	Hamiltonian.	(d)	Non-holonomic.
				(12 × ¼ = 3 web
			Section	
		Ea	Answer all q	uestions.
13.	What	is frame of reference ? (ch question carri	es 1 weightage.
14.	Give t	wo important properties	sof conservation	
15.	What	is energy function? Give	e its propert	aws,
16.		areal velocity.	res property.	
17,		in superposition princip	lis	
18.				
19.	Give t	he postulates of a speci	al theory	cous than the Newtonian formulation. Who
20.		is Coriolis acceleration		vity.

21. What is virtual work?

Section C

Answer any five questions. Each question carries 2 weightage.

- What is a Foucault's Pendulum? Prove that the plane of oscillation of Foucault's pendulum rotate 15° Sin Q per hour where Q is the latitude of the place.
- 23. Prove that the work done around a closed path is zero for conservative force.
- 24 State and explain D' Alembert's principle. Is D' Alembert's equation true for real or virtual displacement.
- 25. What is gravitational potential? Calculate the change in PE if a mass of 500 kg is raised through a height twice the radius of the earth.
- Calculate the mass and momentum of a proton of mass 1.6×10^{-27} kg moving with a speed of 2×10^8 m/s. If the proton coalesces with a stationary nucleus of mass 2.5×10^{-25} kg. Calculate the velocity the combined particle.
- 27. Prove that the work done around a closed path is zero for conservative forces.
- 28. The maximum and minimum distance of a comet from the sun are 1.4×10^9 km and 7.0×10^7 km. If its velocity closest to the sun is 6.0×10^4 m/s what is its velocity when farthest?

 $(5 \times 2 = 10 \text{ weightage})$

Section D

Answer any two questions. Each question carries 4 weightage.

- 29. Deduce the Lorentz transformation equations. How is it superior to Galilean transformations?
- 30. Prove that the velocity of escape of the body from the earth's surface is times the velocity for a circular orbit is just above the earth's surface. Explain why the atmosphere is rare at the moon's surface.
- 31. State and derive Kepler's laws of planetary motion from Newton's law of gravitation.
- 32. Derive the relationship $H = \sum_{j} q_{j} \frac{\partial L}{\partial q_{j}} L$ from the properties of Lagrangian.

 $(2 \times 4 = 8 \text{ weightage})$