Reg. No.....

THIRD SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, NOVEMBER 2015

(UG-CCSS)

Complementary Course

PH 3C 05-OPTICS, LASER, ELECTRONICS AND COMMUNICATION

(2009-2012 Admissions)

ime : Three Hours

Maximum: 30 Weightage

Section A

Answer all questions.

Each question carries ¼ weightage.

- In Fresnel's double mirror, the angle between the mirrors is:
 - (n) 1°.

(b) 17°.

(c) 179°.

- (d) 197".
- The phase change suffered by light when it undergoes a reflection at the boundary of a rarer to denser medium is:
 - (a) 0.

(b) 2π.

(c) n.

- (d) $\frac{\pi}{2}$
- 4. In Fraunhofer diffraction, the incident wave front is:
 - (a) Spherical.

(b) Plane.

(c) Cylindrical.

- (d) Paraboloidal.
- An example of a biaxial crystal is:
 - (a) Aragonite.

(b) Calcite.

(c) Quartz.

(d) Tourmaline.

- In negative crystals :
 - (a) $v_0 < v_{e^+}$

(b) $v_0 > v_e$.

(c) $v_0 = v_e$,

(d) None of these.

Turn ov

- 7. In full wave rectifier, if the input frequency is 50 Hz, the output frequency is :
 - (a) 50 Hz

(b) 100 Hz.

(c) 25 Hz.

- (d) 200 Hz.
- 8. A properly doped crystal diode which has a sharp breakdown voltage is known as
- Very high peak power pulses from the Ruby laser can be obtained by
- 10. In He-Ne laser, the pressure maintained in the discharge tube is of the order of :
 - (a) 1 mm. of Hg.

(b) 100 mm. of Hg.

(c) 76 cm. of Hg.

- (d) 38 cm. of Hg.
- If n₁ and n₂ are the refractive indices of the core and cladding respectively, the critical angle θ,
 - (a) $\sin^{-1}\left(\frac{n_1}{n_2}\right)$

(b) $\sin\left(\frac{n_1}{n_2}\right)$.

(c) $\sin^{-1}\left(\frac{n_2}{n_1}\right)$.

- (d) $\sin \left(\frac{n_2}{n_1}\right)$.
- The maximum value of incident angle to propagate the light through the fiber is called -

 $(12 \times \frac{1}{4} = 3 \text{ weights})$

Section B (Short answer type questions)

Answer all questions. Each question carries 1 weightage.

- 13. Two independent sources are not coherent. Why ?
- 14. Draw the ray diagram for the image formation in Fresnel's biprism.
- 15. Define grating element.
- What is meant by plane of polarization? 16.
- Define specific rotation. 17.
- Cross-wires are not used in Huygen's eyepiece. Why?
- Define the efficiency of a rectifier.
- 20. What is meant by the active region in common emitter transistor circuit?
- 21. Draw the energy level diagram of Ruby laser.

 $(9 \times 1 = 9 \text{ weight})$

Section C (Short essay or paragraph questions)

Answer any five questions. Each question carries 2 weightage.

- 22. In a Newton's ring experiment the diameters of the 15th ring and 5th ring were 0.590 cm. and 0.336 cm. If the radius of the plano-convex lens is 100 cm, calculate the wavelength of the light used.
- 23. What is the highest order spectrum which may be seen with monochromatic light of wavelength 550 nm. by means of a grating having 500 lines/mm.?
- Calculate the thickness of a quarter wave plate. Given μ_E = 1.553, μ_O = 1.544, and λ = 500 nm.
- 25. Describe Ramsden's eyepiece.
- In a common base connection, the current amplification factor is 0.9. If the emitter current is 1 mA, determine the value of the base current.
- 27. Describe a semi-conductor laser.
- Calculate the numerical aperture and acceptance angle if the refractive index of the core is 1.52 and that of the cladding is 1.47.

 $(5 \times 2 = 10 \text{ weightage})$

Section D (Essay questions)

Answer any two questions.

Each question carries 4 weightage.

- 29. State Fermat's principle. Derive law of reflection and law of refraction using Fermat's principle.
- 30. Explain with necessary theory, the Fresnel diffraction at a straight edge.
- Explain the working of an npn transistor. Draw and explain the input and output characteristics
 of npn transistor in common emitter configuration.

 $(2 \times 4 = 8 \text{ weightage})$