THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2013

(UG-CCSS)
Core Course-Mathematics
MM 3B 03-CALCULUS

Time : Three Hours

Maximum : 30 Weightage
I. Answer all twelve questions :

1 Evaluate $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-x}$.
2 State the Sandwich theorem.
3 Define the intermediate value theorem.
4 At what points are the function $y=\frac{\cos x}{x}$ is continuous.
5 State the first derivative theorem for local extreme values.
6 Define the critical point of a function f.
7 What are the critical points of f given $f^{\prime}(x)=x(x-1)$?
8 Find the intervals in which the function f is increasing given $f^{\prime}(x)=x(x-1)$.
9 Evaluate $\lim _{x \rightarrow \infty} \frac{5 x^{2}+8 x-3}{3 x^{2}+2}$.
10 Find dy if $y=x^{5}+37 x$.
11 Write the sum without sigma notation and then evaluate the sum $\sum_{k=1}^{2} \frac{6 k}{k+1}$.
12 Suppose that $\int_{1}^{2} f(x) d x=5$. Find $\int_{1}^{2} f(u) d u$.

$$
(12 \times 1 / 4=3 \text { weightage })
$$

II. Short Answer Type Questions. Answer all nine questions :

13 Find the work done by a force of $F(x)=\frac{1}{x^{2}} \mathrm{~N}$ along the x-axis from $x=1 \mathrm{~m}$ to $x=10 \mathrm{~m}$.
14 A spring has a natural length of 1 m . A force of 24 N stretches the spring to a length of 1.8 m . Find the force constant k.

15 Find the volume of the solid generated by revolving the region between the y-axis and the curve $x=\frac{2}{y}, 1 \leq y \leq 4$ about the y-axis.

16 Evaluate $\int_{-1}^{1} 3 x^{2} \sqrt{x^{3}+1} d x$.
17 Find $\frac{d y}{d x}$ if $y=\int_{1}^{x^{2}} \cos t d t$.
18 Find the average value of $f(x)=4-x^{2}$ on $[0,3]$.
19 Show that the value of $\int_{0}^{1} \sqrt{1+\cos x} d x$ cannot possibly be 2 .
20 Evaluate $\sum_{k=1}^{4}\left(k^{2}-3 k\right)$.

21 Find the linearization of $f(x)=\cos x$ at $x=\frac{\pi}{2}$.
III. Short Essay or Paragraph questions. Answer any five questions :

22 Show that the centre of mass of a straight thin strip or rod of constant density δ lies halfway between its two ends.

23 Find the lateral surface area of the cone generated by revolving the line segment $y=\frac{x}{2}, 0 \leq x \leq 4$ about the x-axis.

24 Find the volume of the solid generated by revolving the region between the parabola $x=y^{2}+1$ and the line $x=3$ about the line $x=3$.

25 Evaluate $\int_{0}^{\pi / 6} \cos ^{-3} 2 \theta \sin 2 \theta d \theta$.
26 Find the total area between the region $y=-x^{2}-2 x,-3 \leq x \leq 2$ and the x-axis.
27 Express the solution of the following initial value problem as an integral
Differential equation: $\frac{d y}{d x}=\tan x$
Initial condition $\quad: y(1)=5$.
28 Show that among all rectangles with a given perimeter the one with the larger area is a square.

$$
(5 \times 2=10 \text { weightage })
$$

IV. Essay questions. Answer two questions :

29 A 10 m . long rod with thickness 5.52 has density $\delta(x)=\left(1+\frac{x}{10}\right) \mathrm{kg} / \mathrm{m}$. Find the rod's centre of mass.

30 Find the area of the region in the first quadrant that is bounded above by $y=\sqrt{x}$ and below by the x-axis and the line $y=x-2$.
31 The cost function at American Gadget $\mathrm{C}(x)=x^{3}-6 x^{2}+15 x$ (x is thousands of units). Is there a production level that minimize average cost? If so, what is it ?

