100	100		~		
C	64	Т	1	盂	63
-	•	л	-	o	\mathbf{z}

(Pages : 4)

Nam	e	
*****	No	

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2019

(CUCBCSS-UG)

Statistics

STS 4C 04-APPLIED STATISTICS

Maximum: 80 Marks Time: Three Hours

Use of Calculator and Statistical Tables are permitted.

Part A

Answer all questions in one word.

Each question carries 1 mark. 1. If each and every unit of a population has equal chance of being included in the sample, it is A list or a map which serves as a guide to cover the population is known as - The hypothesis which is to be tested for it's possible rejection is — 4. The classical method used to separate the assignable causes and chance causes of variation 5. The sales of a departmental store on Dussera and Diwali are associated with which component of a time series? The component of a time series attached to long-term variations is termed as -The trend of economic activity can be studied with the help of -Fisher's ideal index number is the ----- of Laspeyre's and Paasche's index numbers. - is a statistical device principally used for the study and control of repetitive processes. A finite number of units produced during a definite period of time is called a —

Part B

Answer all questions in one sentence. Each question carries 2 marks.

- 11. Define stratification. What are the points to be observed under stratification?
- 12. Explain any method of selecting a simple random sample.

Turn over

 $(10 \times 1 = 10 \text{ marks})$

- 13. What do you mean by degrees of freedom?
- Discuss a time series and its importance.
- 15. What is time reversal test?
- 16. What are the limitations of statistical quality control?
- 17. Distinguish between control chart for variables and attributes.

 $(7 \times 2 = 14 \text{ marks})$

Part C

Answer any three questions. Each question carries 4 marks.

 The figures given below show the export of sugar from India for the years 1970-71 to 1979-80. Fi a straight line trend using semi-average method.

Years	Export (Lakh Tonnes		
1970-1971	3.9		
1971-1972	1.3		
1972-1973	1.1		
1973-1974	4.4		
1974-1975	9.4		
1975-1976	9.6		
1976-1977	3.4		
1977-1978	2.5		
1978-1979	8.6		
1979-1980	2.9		

- 19. Distinguish between p chart and np chart.
- 20. What are the advantages of sampling over census method?
- 21. Define Laspeyre's and Paasche's index numbers for price and quantity.
- 22. What are the uses of index numbers?

 $(3 \times 4 = 12 \text{ marks})$

Part D

Answer any four questions.

Each question carries 6 marks.

- 23. Explain cluster sampling with an example.
- 24. Explain the test procedure of two-way ANOVA.
- 25. Explain factor reversal test. Check whether Laspeyre's and Paasche's indices satisfy factor reversal test.
- 26. What are the points to be observed while preparing a questionnaire?
- Explain the method of least squares for measuring trend. Also state the merits and demerits of this
 method.
- 28. State the criteria for detecting lack of control in mean and range charts.

 $(4 \times 6 = 24 \text{ marks})$

Part E

Answer any two questions.

Each question carries 10 marks.

- 29. Explain census method and sampling and discuss their merits and demerits.
- 30. Perform a two-way ANOVA on the data given below :

	Measurements by pupils				
Sides of triangle	A	В	С	D	E
a	5.44	5.41	5.43	5.42	5.43
ь	5.43	5.41	5.42	5.43	5.44
e	5.45	5.42	5.43	5.43	5.44

31. A dry-cells producing factory wanted to test the life of cells produced daily. The cells will be considered satisfactory if their life is 25 hours. For this a sample of 5 cells was drawn on 12 consecutive days. The results were as follows:

150	Life of cells (in hours)					
Days	1	2	3	4	5	
1	27.0	28.0	25.5	26.5	23.0	
2	23.5	27.5	26.0	27.0	29.0	
3	27.5	27.0	28.0	26.5	24.5	
4	28.0	26.5	27.5	28.5	27.0	
5	27.5	24.5	25.0	26.0	27.5	
6	26.5	26.0	27.0	27.5	26.0	
7	21.0	22.0	28.0	26.5	25.0	
8	25.5	24.5	25.0	27.5	27.5	
9	28.0	26.5	30.0	29.5	27.0	
10	25.0	27.0	26.5	24.5	23.0	
1	22.0	26.5	27.5	23.5	25.5	
2	26.0	28.0	27.0	30.0	29.0	

- (i) Calculate 3σ limits of control chart for mean when the value of mean of the universe 25 hours and standard deviation is 2 hours.
- (ii) Draw a range chart when standard values are not specified.

32. Compute Laspeyre's, Paasche's and Fisher's price index from the following data:

Commodities	Base Year		Current Year	
	Price	Quantity	Price	Quantity
A	10	12	12	15
В	7	15	5	20
C	5	24	9	W 2507
D	16	5	14	20 5

 $(2 \times 10 = 20 \text{ mark})$