Name

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Mathematics

MT 4E 02—ALGEBRAIC NUMBER THEORY

Time: Three Hours

Maximum: 36 Weightage

Standard notation as in prescribed text is followed.

Part A

Answer all questions. Each question carries weightage 1.

- Express $t_1^4 + t_2^4$ in terms of elementary symmetric polynomials (n = 2).
- Find the order of the group G/H where G is a free abelian group with basis x, y, z and H is generated by -2x, x + y, y + z.
- Find θ such that $Q(\theta) = Q(\sqrt{2}, \sqrt[3]{5})$.
- 4. Show that an algebraic number is an algebraic integer if and only if (iff) its minimal polynomial over O has coefficients in Z.
- 5. Let $K = Q(\zeta)$ where $\zeta = e^{2\pi i/5}$. Calculate $N_K(\alpha)$ and $T_K(\alpha)$ for $\alpha = \zeta^2$.
- Let x and y be non-zero elements of a domain D. Prove that $x \mid y$ iff $\langle x \rangle \supseteq \langle y \rangle$.
- Find a ring which is not noetherian.
- 8. Is $10 = (3+i) \times (3-i) = 2 \times 5$ an example of non-unique factorization in $\mathbb{Z}[i]$? Give reasons for your answer.
- 9. True or False?

A fractional ideal of $\mathcal D$ is a finitely generated $\mathcal D$ -submodule of K.

- 10. Prove: If σ_1 is a proper ideal of the ring of integers \mathcal{D} of the number field K_1 then G^{-1} properly contains \mathcal{D} .
- 11. State Minkowskis theorem.

Turn over

- 12. Show that the quotient group is $\mathbb{R}_{\mathbb{Z}}$ is isomorphic to the circle group S.
- Sketch the lattice R² generated by (− 1, 2) and (2, 2) and a fundamental domain for the lattice
- 14. Let d be a squarefree positive integer and let $K = \mathbb{Q}(\sqrt{d})$. Calculate $\sigma: K \to L^{st}$.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question carries weightage 2.

- Let G be a finitely generated abelian group with no non-zero elements of finite order. Prove that g must be a free group.
- Prove that the set of algebraic numbers is a subfield of the complex field C.
- 17. Let $K = \mathbb{Q}(\theta)$ be a number field. Prove: If all k-conjugates of θ are real, then the discriminant of any basis is positive.
- Let K be a number field of degree n-prove that the D, the ring of integers of K, is a free abelian group of rank n.
- 19. Let d be a squarefree rational integer with $d \not\equiv 1 \pmod{4}$. Then prove that $\mathbb{Z}\left[\sqrt{d}\right]$ is the ring d integers of $\mathbb{Q}\left(\sqrt{d}\right)$.
- 20. Prove that the group of units of $\mathbb{Q}(\sqrt{-3})$ is the group $\{\pm 1, \pm w, \pm w^2\}$ where $w = e^{2\pi i/3}$.
- 21. Prove that an integral domain $\mathcal D$ is noetherian iff $\mathcal D$ satisfies the maximal condition.
- 22. Prove that an ring of integers of $\mathbb{Q}(\sqrt{-5})$ is not a unique factorization domain.
- 23. If x, y, z are integers such that $x^2 + y^2 = z^2$, prove that at least one of x, y, z is a multiple of 3.
- 24. Prove: If $\alpha_1, \ldots, \alpha_n$ is a basis of the number field K over \mathbb{Q} , then $\sigma(\alpha_1), \ldots, \sigma(\alpha_n)$ are linearly independent over \mathbb{R} .

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions.

Each question carries weightage 4.

- 25. Let K be a number field. Then prove that there is an algebraic integer $\theta \in k$ such that $k = \mathbb{Q}(\theta)$.
- 26. Let $\zeta = e^{2\pi/p}$ where p is an odd prime. Prove that $\mathbb{Z}[\zeta]$ is the ring of integers of $\mathbb{Q}[\zeta]$.
- Let D be a domain in which factorization into irreducibles is possible. Prove that factorization into
 irreducibles is unique iff every irreducible is prime.
- 28. Prove that the equation $x^4 + y^4 = z^2$ has no integer solutions with $x, y, z \neq 0$.

 $(2 \times 4 = 8 \text{ weightage})$