N	ame				
**	ame	*********	*******	*******	********

FOURTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, MAY 2016

(UG-CCSS)

Complementary Course

MM 4C 04-MATHEMATICS

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer all questions. Each question carries a weightage of 1/4.

- 1. Is the equation $y'' = \sqrt{y^{1^2} + 1}$ linear or non-linear?
- 2. Is $y = e^{-x}$ a solution of y'' + y = 0?
- 3. Solve y'' + 7y = 0.
- Find the Laplace Transform of f(t)=t⁹.
- Define the unit impulse function.
- Find the inverse Laplace Transform of $F(s) = \frac{2}{2s-3}$.
- 7. Find the fundamental period of $\cos 2\pi x$.
- 8. Is the following function even or odd or neither $x^2 \cos nx$.
- 9. What is the 2 dimensional Laplace equation?
- Define the Lipschitz condition.
- 11. What is an initial value problem?
- State Simpson's rule.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Section B

Answer all questions. Each question carries a weightage of 1.

- 13. Find the Wronskean of the functions $y_1 = x^2$ and $y_2 = x^2 \ln x$.
- 14. Find the solution of y'' + 4y' + 4y = 0.
- 15. Find the Laplace Transform of $f(t) = \cosh 7t$.

Turn over

- 16. Find the inverse Laplace Transform of $F(s) = (s-2)^{-5}$.
- 17. Is $u = \sin ct \sin x$ a solution of the wave equation (with suitable c)?
- 18. Solve $u_{xy} = u_x$
- 19. Solve $u_y = u$.
- 20. Show that $f(x, y) = |\sin y| + x$ satisfies the Lipschitz condition with m = 1.
- 21. Apply Euler's method any compute y_1, y_2, \dots, y_5 with h = 0.02, given $y' = \frac{(y-x)}{(y+x)^{y}(0)}$ (9 × 1 = 9 weights)

Section C

Answer any five questions. Each question carries a weightage of 2.

- 22. Solve $y'' + y' = 2 + 2x + x^2$, y(0) = 8, y'(0) = -1.
- 23. Solve $x^2y'' + xy' + y = 0$.
- Find the Laplace Transform of F (t) = te^{-2t} sin 2t.
- 25. State the convolution theorem and use it to evaluate the inverse h(t) of $H(s) = s(s^2 + a^2)^{-2}$
- 26. Find the Fourier sine series of $f(x) = \pi x$, $0 < x < \pi$.
- 27. Using Runge Kutta Method, find y when x = 0.2, given $y' = \frac{y^2 x^2}{y^2 + x^2}$, y(0) = 1.
- 28. Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rule, taking h = 0.25.

Section D

 $(5 \times 2 = 10 \text{ weightage})$

Answer any two questions.

Each question carries a weightage of 4.

- 29. Solve $y'' + y = \sec x$.
- 30. Solve by the method of Laplace Transforms: $y^* + y = t$, y(0) = 1, y'(0) = -2.
- 31. Find the Fourier series expansion of $f(x) = \frac{x^2}{2}$, $-\pi < x < \pi$. Hence show that $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots = \frac{\pi^2}{6}$.

 $(2 \times 4 = 8 \text{ weightight})$