| N | ame | | | | | |----|-----|-----------|---------|---------|----------| | ** | ame | ********* | ******* | ******* | ******** | # FOURTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, MAY 2016 (UG-CCSS) Complementary Course MM 4C 04-MATHEMATICS Time: Three Hours Maximum: 30 Weightage #### Section A Answer all questions. Each question carries a weightage of 1/4. - 1. Is the equation $y'' = \sqrt{y^{1^2} + 1}$ linear or non-linear? - 2. Is $y = e^{-x}$ a solution of y'' + y = 0? - 3. Solve y'' + 7y = 0. - Find the Laplace Transform of f(t)=t⁹. - Define the unit impulse function. - Find the inverse Laplace Transform of $F(s) = \frac{2}{2s-3}$. - 7. Find the fundamental period of $\cos 2\pi x$. - 8. Is the following function even or odd or neither $x^2 \cos nx$. - 9. What is the 2 dimensional Laplace equation? - Define the Lipschitz condition. - 11. What is an initial value problem? - State Simpson's rule. $(12 \times \frac{1}{4} = 3 \text{ weightage})$ ### Section B Answer all questions. Each question carries a weightage of 1. - 13. Find the Wronskean of the functions $y_1 = x^2$ and $y_2 = x^2 \ln x$. - 14. Find the solution of y'' + 4y' + 4y = 0. - 15. Find the Laplace Transform of $f(t) = \cosh 7t$. Turn over - 16. Find the inverse Laplace Transform of $F(s) = (s-2)^{-5}$. - 17. Is $u = \sin ct \sin x$ a solution of the wave equation (with suitable c)? - 18. Solve $u_{xy} = u_x$ - 19. Solve $u_y = u$. - 20. Show that $f(x, y) = |\sin y| + x$ satisfies the Lipschitz condition with m = 1. - 21. Apply Euler's method any compute y_1, y_2, \dots, y_5 with h = 0.02, given $y' = \frac{(y-x)}{(y+x)^{y}(0)}$ (9 × 1 = 9 weights) #### Section C Answer any five questions. Each question carries a weightage of 2. - 22. Solve $y'' + y' = 2 + 2x + x^2$, y(0) = 8, y'(0) = -1. - 23. Solve $x^2y'' + xy' + y = 0$. - Find the Laplace Transform of F (t) = te^{-2t} sin 2t. - 25. State the convolution theorem and use it to evaluate the inverse h(t) of $H(s) = s(s^2 + a^2)^{-2}$ - 26. Find the Fourier sine series of $f(x) = \pi x$, $0 < x < \pi$. - 27. Using Runge Kutta Method, find y when x = 0.2, given $y' = \frac{y^2 x^2}{y^2 + x^2}$, y(0) = 1. - 28. Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rule, taking h = 0.25. ## Section D $(5 \times 2 = 10 \text{ weightage})$ Answer any two questions. Each question carries a weightage of 4. - 29. Solve $y'' + y = \sec x$. - 30. Solve by the method of Laplace Transforms: $y^* + y = t$, y(0) = 1, y'(0) = -2. - 31. Find the Fourier series expansion of $f(x) = \frac{x^2}{2}$, $-\pi < x < \pi$. Hence show that $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots = \frac{\pi^2}{6}$. $(2 \times 4 = 8 \text{ weightight})$