FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2013

(U.G.-CCSS)

Mathematics-Core Course
MM 5B 06-ABSTRACT ALGEBRA

Time : Three Hours

Maximum : 30 Weightage
Answer all twelve questions.

1. Define an abelian group.
2. Order of a finite group G is \qquad
3. In the addition group of integers the order of every element zero is \qquad
4. Give an example of a cyclic group.
5. State True or False :

If $a \in \mathrm{H}=\mathrm{H}$ then $\mathrm{Ha}=\mathrm{aH}=\mathrm{H}$, where H is a subgroup of a group.
6. S_{n} has elements.
7. State True or False :

Every permutation is a one-to-one function.
8. Define a transposition.
9. State True or False :

The set φ of rational numbers is not a ring w.r.t. ordinary addition and multiplication.
10. Write the smallest subspace of any vector space.
11. Is it true that if the set $\mathrm{S}=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ of a vector space V is L.D. then every superset of S is also L.D. ?
12. Define the basis of a vector space.

$$
(12 \times 1 / 4=3 \text { weightage })
$$

Short answer questions.
Answer all questions.
13. What is the dimension of a vector space.
14. Define the span of a set.
15. Give an example of a linearly independent set.
16. Define a homomorphism.
17. Give an example of a field.
18. What is the order of $\mu=(1,4)(3,5,7,8)$.
19. Consider $\alpha=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2\end{array}\right), \beta=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5\end{array}\right)$, compute $\alpha \beta^{2}$.
20. Show that $\{1,-1, i,-i\}$ is a cyclic group.
21. Examine whether $\mathrm{G}=\{-3,-2,-1,0,1,2,3\}$ for the operation + , is a group.
$(9 \times 1=9$ weightage $)$
Answer any five questions.
22. Prove that the set $\mathrm{G}=\{a+b \sqrt{2}: a, b, \in \mathrm{R}\}$ forms a group under multiplication.
23. Prove that if a, b are any two elements of a group G then $(a \cdot b)^{2}=a^{2} b^{2}$ iff G is abelian.
24. Prove that every group of prime order is cyclic.
25. Let $\mathrm{V}=\mathrm{R}_{3}$ be the vector space. Let $\mathrm{U}=\left\{u=\left(x_{1}, x_{2}, x_{3}\right) \in \mathrm{V} \mid x_{1}+x_{2}+x_{3}=0\right\}$. Show that U is a subspace of V.
26. Check whether the set :
$S=\{(1,1,0),(1,0,1),(0,1,1)\}$.
linearly independent in V_{3}.
27. If p is prime then prove that Z_{p} is a field.
28. Prove that if a finite group of order n contains an element of order n then the group must be cyclic.
($5 \times 2=10$ weightage)
Answer any two questions.
29. Show that a non-empty subset H of a group G is a subgroup of G iff $a b^{-1} \in H$ for all $a, b \in H$.
30. Prove that every finite integral domain is a field.
31. Suppose $S=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ is an ordered set of a vector space V. If $V_{1} \neq 0$ then prove that the set S is L.D. iff one of the vectors of $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{k}\right\}$ belongs to the span of remaining other vectors of the set S.

