ш.	24	n	a	1	2
n	9	v	9	×	

-	-						
ж	EB.	w.	-	-	ĸ.	-	er.
					•	т.	-26.1

Nam	e		4.	 	 	
Reg.	No.	1				

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2015

(U.G.-CCSS)

Core Course-Physics/Applied Physics

		PH 5B 09/AP	5B 11—ELE	CTRODYNAMICS—II			
		(20)	09-2012 A	Imissions)			
me :	Three H	lours		Maximum : 30 Weightage			
			Answer 1	all.			
1.	The cor	scept of displacement curre	nt was a majo	or contribution attributed to :			
		Faraday.		Lorentz.			
	(c)	Maxwell.	(d)	Lenz.			
2	Electro	magnetic waves travel	— in dielec	tries than in conductors.			
3,	In a go	od conductor — are -	-				
4.	The rm	s value of a sinusoidal or co	irrent is equi	al to its value at an angle of :			
	(a)	60 degree.	(b)	90 degree.			
	(e)	30 degree	(d)	45 degree.			
5.	When I	harmonics of a fundamenta	sine wave a	re added to it we get a :			
6.	Skin ef	ffect at high frequencies car	be neutraliz	ed by using conductors made of:			
7.	In one	time constant, the current t	through an R	L circuit decreases by :			
	(a)	69%.	(b)	14.14%.			
	(c)	63%.	(d)	70.7%.			
8.	Accord		um of all IR o	frops and emfs in any closed loop of a network is			
	(a)	Zero.	(b)	Positive.			
		Negative.	(d)	Greater than unity.			
9.	9. The superposition theorem is essentially based on the concept of :						
	(a)	Reciprocity.		Duality.			
		Linearity.		Non linearity.			
10	Inne	apacitance the EMF lags bel					
	(a)	30"		60*.			
	(e)	90*.	(d)	180*.			

Turn over

- 11. A pulse of electromagnetic radiation can be produced by :
 - (a) Acceleration of a charge.
 - (b) Charge moving with steady velocity.
 - (e) Slow variation of current in a conductor.
 - (d) All the above.
- 12. The self inductance of a coil is measured using :
 - (a) Metre bridge.

- (b) Potentiometer.
- (c) Wheatstone's bridge.
- (d) Anderson bridge.

 $(12 \times 14 = 3 \text{ weightage})$

Part B

Answer all questions.

Each question carries 1 weightage.

- 13. What are non-inductive coils?
- 14. Define attenuation constant.
- 15. Explain polarization of EM waves.
- 16. What are the steps to be taken while applying the superposition theorem to the solution of networks?
- 17. What is skin effect? How is it minimized?
- 18. What is inductive reactance and capacitive reactance?
- 19. Define virtual ampere and virtual volt.
- State and explain Kirchoff's current law.
- 21. Explain operator j and show it graphically.

 $(9 \times 1 = 9 \text{ weightage})$

Part C

Answer any five.

- 22. Prove that magnitude of the induced emf is equal to the rate of change of induction in a closed circuit.
- 23. Obtain expressions for the growth and decay of the change of a condenser through a resistance.
 Under what condition is the discharge of the condenser oscillatory?
- 24. A condenser of capacity 0.5 MF is discharged through a resistance of 10 megohms. Find the time
- 25. Derive an expression for the energy stored in an inductance. Calculate the energy of an inductor having an inductance of 60mH when a current of 2A flows through it.
- 26. In a plane em wave the electric field oscillates sinusoidally at a frequency of 20 mHz and amplitude field?

 48V/m. What is the wavelength of the wave? What is the amplitude of the oscillating magnetic

- 27. The self-inductance of a coil is 3.0 mH. A current of 5A flows through it. The current is reduced to zero in 0.1s when switched off. Calculate the induced emf.
- Calculate the force of repulsion between a coil carrying a.c. and a neighbouring conductor.

 $(5 \times 2 = 10 \text{ weightage})$

Part D

Answer any two.

- 29. Derive Biot- Savart's Law and Ampere's law using the concept of magnetic vector potential.
- Derive Maxwell's equations in an isotropic dielectric medium.
- 31. Derive expressions for the electric field component and magnetic field component for the reflection of a plane wave.
- 32. State and prove : (a) Superposition theorem ; (b) maximum power transfer theorem.

 $(2 \times 4 = 8)$