Name	
A. TARLESCO.	

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2015

(U.G.-CCSS)

Core Course—Physics/Applied Physics

PH 5B 10/AP 5B 12-QUANTUM MECHANICS

(2009-2012 Admissions)

ne : Three Hours

Maximum: 30 Weightage

Section A

Answer all questions.

- 1. Which law explains distribution of radiant energy against wavelength for the whole spectral range?
 - (a) Wien's law.
- (b) Rayleigh Jean law.
- (c) Planck's law.
- (d) Maxwell distribution law.
- 2. In which type of electromagnetic radiation is the photoelectric effect dominant?
 - (a) X-ray.

- (b) R-ray.
- (c) Microwave.
- (d) Visible and ultraviolet.
- In Compton scattering the incident photon looses maximum energy to the electron when the photon is scattered at:
 - (a) 0 degree.

- (b) 180 degrees.
- (c) 90 degrees.
- (d) 45 degrees.
- 4. Matter waves are:
 - (a) Electromagnetic transverse waves.
 - (b) Longitudinal waves.
 - (c) Waves produce in a medium.
 - (d) Neither longitudinal nor transverse waves.
- 5. The wavelength of matter waves is given by :
 - (a) \(\lambda = \h/mv
- (b) $\lambda = h_0$
- (c) $\lambda = hv/m$
- (d) $\lambda = hm/v$
- An electron microscope can magnify objects by :
 - (a) 10 x.

(b) 1/10 x

(c) 500 x

(d) 5x

Turn over

- Stern Gerlach experiment gives a direct confirmation of ;
 - (a) Space quantization.
- (b) Spin of electron.
- (c) Wave nature of electron. (d) Quantized atomic magnetic moment.
- 8. For a hydrogen atom the stationery Bohn orbits:
 - (a) Are not stable classically. (b) Are stable.
 - (c) Can be derived.
- (d) None of these.
- Which of the following statement is most correct?
 - (a) Each eigen function belongs to only one eigen value.
 - (b) One or more eigen functions may belong to one eigen value.
 - (c) Eigen functions belonging to different eigen values are orthogonal.
 - (d) All these.
- 10. The zero point energy of harmonic oscillator is :
 - (a) ho:

(b) ¹/₂ ħ ω.

(c) 2 h w.

- (d) $\frac{1}{4} \hbar \omega$.
- 11. According to wave mechanics a free particle can possess:
 - (a) Discrete energies.
- (b) Only one single value of energy.
- (c) Continuous energies.
- (d) All these.
- 12. The quantum operator for angular momentum is :
 - (a) $\frac{\mathbf{P}^2}{2m}$.

(b) I m

(e) $\frac{-i\hbar}{2\pi} \times \nabla$.

(d) ∇×r

 $(12 \times 14 = 3 \text{ weightage})$

Section B

Answer all questions. Each question carries 1 weight.

- What is a photon? Which statistics do photons obey?
- Low frequency light cannot trigger photoelectric effect. Why?
- Explain, why Compton scattering does not allow electron to recoil at angle greater than 15.
- 16. What is Pair production?

- 17. What are the postulates of wave mechanics?
- 18. Give Bohr's correspondence principle.
- 19. How is the total energy of a hydrogen related to the principle quantum no. ? Explain the significance of the negative sign in the energy equation.
- 20. Explain, what is meant by normalization of a wave function.
- Distinguish between allowed transitions and forbidden transitions.

 $(9 \times 1 = 9 \text{ weightage})$

Section C

Answer any five questions.

- Discuss Planck's quantum hypothesis and deduce Planck's law of energy distribution for black body radiation.
- 23. What is Photoelectric effect? What are its characteristics? What are the difficulties encountered in explaining photoelectric effect classically?
- Light of wavelength 4500 A* ejects photoelectrons from a sodium surface of work function 2.3 eV. The stopping potential is experimentally found to be 0.46 volts. Calculate Planck's constant.
- In a Compton scattering experiment an incident radiation of wavelength 0.2408 nm in the direction 180 degree w.r.t. the incident direction. Find the wavelength of the radiation.
- 26. What is Gravitational red shift? Obtain an expression for gravitational red shift.
- 27. Explain how the quantum numbers are defined in vector atom model.
- 28. Explain Zeeman splitting of the sodium D lines in a weak magnetic field.

 $(5 \times 2 = 10 \text{ weightage})$

Section D

Answer any two questions.

- 29. Describe the Davisson Germer experiment to prove the existence of matter waves.
- 30. Explain Bohr's postulates of the atomic structure. Derive expressions for the radius of the Bohr orbit and total energy of the hydrogen atom.
- 31. Give the theory of finite potential well. Draw the figure representing the wave functions and probability density.
- 32. What is space quantization? Describe Stern Gerlach's experiment. How does it prove the existence of magnetic moment and electron spin?

 $(2 \times 4 = 8 \text{ weightage})$