Maximum: 120 Marks

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(CUCBCSS-UG)

MAT 5B 05-VECTOR CALCULUS

Time: Three Hours

Part A

Answer all the twelve questions. Each question carries 1 mark.

- Find the domain and range of f(x,y) = sinxy.
- 2. Evaluate $\lim_{(x,y)\to(0,0)} \frac{x}{y}$
- Find the gradient of $\phi(x, y, z) = xyz$
- Compute the divergence of $\vec{f} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$.
- In what direction the directional derivative of a function becomes maximum?
- What do you mean by an irrotational vector?
- What is the linearization of the function f(x, y, z) at the point (1, 2, 3)?
- Find the total differential of u if $u = \ln(x^2 + y^2 + z^2)$.
- Fill in the blanks : If f and g are irrotational vector point functions, then $\nabla \cdot (\hat{f} \times \hat{g}) = \dots$
- State the Normal form of Green's theorem in the plane.
- Fill in the blanks: If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, then $r^n\vec{r}$ is solenoidal if $n = \dots$
- 12. State Gauss's Divergence theorem mentioning all the assumptions involved in it explicitly.

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer any ten questions. Each question carries 4 marks.

- 3. Find the vector normal to the surface $\phi(x,y,z) = x^3 + y^3 + z^3$ at (1,-1,1).
- 4. Evaluate $\lim_{(x,y)\to(0,0)} \frac{y-x}{y+x}$.

Turn ov

- 15. If $z^3 xy + yz + y^3 2 = 0$ then, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at (1, 1, 1).
- 16. Find the total derivative of $u = x^3 + y^3$ with respect to t if $x = \cos t$, $y = \sin t$.
- 17. Compute the average value of the function f(x, y, z) = xyz over the boundary of the cube $0 \le x \le 2, 0 \le y \le 2, 0 \le z \le 2$.
- 18. Linearize the function $f(x, y, z) = x^2 xy + 3\sin z$ at (2.1.0).
- 19. Find the directional derivative of f(x,y,z) = xy + yz + zx at (1, 2, 3) in the direction of $3\bar{t} + 4\bar{f} + 5\bar{k}$.
- 20. Find the circulation of $\hat{f} = (x, y)\hat{i} + x\hat{j}$ around the unit circle centered at the origin.
- 21. Find the value of λ which makes the following vector $\vec{f} = (\lambda xy z^3)\vec{i} + ((\lambda 2)x^2)\vec{j} + ((1 \lambda)xz^2)\vec{k}$ is irrotational.
- 22. Verify whether the differential $e^x \cos y dx + (xz e^x \sin y) dy + (xy + z) dz$ is exact or not.
- 23. If \hat{f} and \hat{g} are irrotational, then show that $\hat{f} \times \hat{g}$ is solenoidal.
- 24. Evaluate $\int_{0}^{2} \int_{x^2}^{2x} (4x+2) dy dx$ by changing the order of integration.
- 25. Prove that if a function f(x, y) is differentiable at the origin, then it is continuous at the origin.
- 26. Evaluate the integral $\int_c xydy y^2dx$ where c is the square cut from the first quadrant by the lines x = 1 and y = 1.

 $(10 \times 4 = 40 \text{ marks})$

Part C

Answer any six questions. Each question carries 7 marks.

- 27. Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx.$
- 8. Find $\vec{\nabla} f(r)$, if $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$.
- Show that the work done by the force field \(\vec{f} = yz \vec{i} + zx \vec{j} + xy \vec{k}\) is independent of the path joining the points (-1, 3, 9) and (1,6, -4).

- 30. Test the continuity of f(x, y) defined by $f(x, y) = \frac{x^2 + y^2}{x + y}$, $(x, y) \neq (0, 0)$ and f(x, y) = 0, (x, y) = (0, 0).
- 31. Find the equation to the tangent plane and normal line to the surface $f = (x, y, z) + x^2 + y^2 + z^2 9 = 0$ at the point (1, 2, 4).
- 32. Evaluate the area encosed by the region $x^2 + y^2 = 4$, y = 1, $y = \sqrt{3x}$ in the (x, y) plane, using double integrals.
- 33. Find the Local extreme values of $f(x, y) = xy x^2 y^2 2x 2y + 4$.
- 34. Evaluate the volume of the ellipsoide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 35. Show that $\vec{f} = (x+2y+4z)\vec{i} + (2x-3y-z)\vec{j} + (4x-y-2z)\vec{k}$ is conservative and find its scalar potential.

 $(6 \times 7 = 42 \text{ marks})$

Part D

Answer any two questions.

Each question carries 13 marks.

- 36. (a) Verify Gauss's divergence theorem for $\vec{f} = x \vec{i} + y \vec{j} + z \vec{k}$ over the sphere of radius a centered at the origin.
 - (b) State the Fundamental theorem of line integration.
- 37. (a) Evaluate the line integral $\int_{C} \tilde{f} \cdot dr$ where C is the boundary of the triangle with vertices (0,0,0), (1,0,0) (1,1,0).
 - (b) Find (Curl Curl) \vec{f} , if $\vec{f} = x^2 y \vec{i} 2xz \vec{j} + 2yz \vec{k}$.
- - (b) Verify Green's theorem for $\int_C (xy + y^2) dx + x^2 dy$, where C is the curve joining $y = x^2$ and $y = x^2$

 $(2 \times 13 = 26 \text{ mark})$