-	200.10
	60048

(Pages: 3)

Nam	C	 ***
10000	Table 1 to 1 to 1	

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2019

(CUCBCSS)

Mathematics

MAT 6B 09—REAL ANALYSIS

Time: Three Hours

Maximum: 120 Marks

Section A

Answer all the twelve questions. Each question carries 1 mark.

- Give an example of a real valued function with set of real numbers as domain which is nowhere continuous.
- 2. Define uniform continuous function.
- 3. State Maximum-Minimum Theorem.
- 4. Define a tagged partition of a closed and bounded interval in R.
- 5. Let $f(x) = x^2$ for $x \in [0,4]$. Calculate the Riemann sum corresponding to the partition P = (0, 1, 2, 4) with the tags at the right end points of the subintervals.
- State Fundamental Theorem of Calculus (Second form).
- 7. Define uniform norm of a bounded function.
- Give an example to show that pointwise convergence of sequence of functions need not imples uniform convergence.
- 9. State Cauchy Criterion for the uniform convergence of a series of functions.
- Define improper integral of the second kind.
- 11. Show that B(m, n) = B(n, m).
- 12. Define Gamma function.

 $(12 \times 1 = 12 \text{ mark})$

Section B

Answer any ten out of fourteen questions. Each question carries 4 marks.

13. Let I be a closed and bounded interval and let $f: I \to \mathbb{R}$ be continuous of I. If $k \in \mathbb{R}$ is any number satisfying $\inf f(I) \le k \le \sup f(I)$, then show that there exists a number $c \in I$ such that $f(c) = \lim_{n \to \infty} f(I) \le k \le \sup_{n \to \infty} f(I)$.

- 14. Show that the equation $x = \cos x$ has a solution in the interval $[0, \pi]$.
- 15. If $f: A \to \mathbb{R}$ is uniformly continuous on a subset A of \mathbb{R} and if (x_n) is a Cauchy sequence in A, then show that $(f(x_n))$ is a Cauchy sequence in \mathbb{R} .
- 16. If f and g are uniformly continuous on subset A of \mathbb{R} , show that f + g is uniformly continuous on A.
- Consider the function h defined by h (x) = x + 1 for x ∈ [0,1] rational and h (x) = 0 for x ∈ [0,1] irrational. Show that h is not Riemann integrable.
- 18. State and prove the Mean Value Theorem for Integrals.
- State Lebesgue's Integrability Criterion. Using this discuss the Riemann integrability of any step function on [a, b].
- 20. Let F and G be differentiable on [a, b] and let f = F' and g = G' belongs to R[a, b], then show that $\int_a^b f G = [FG]_a^b \int_a^b F g.$
- 21. Show that $\lim (x/(x+n)) = 0$ for all $x \in \mathbb{R}, x \ge 0$. Also show that the convergence is not uniform on the interval $[0, \infty)$.
- 22. Discuss the convergence and uniform convergence of $\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$.
- 23. Show that $\int_{1}^{\infty} \frac{1}{x^{4/3}} dx$ converges.
- 24. Show that $\int_0^1 \frac{\sin x}{\sqrt{x}} dx$ converges.
- 25. Show that $\Gamma(1/2) = \sqrt{\pi}$.

 $(10 \times 4 = 40 \text{ marks})$

Section C

Answer any six out of nine questions.

Each question carries 7 marks.

State and prove Boundedness Theorem.

If f(x) = x and $g(x) = \sin x$, show that both f and g are uniformly continuous of \mathbb{R} , but that the

If $f \to \mathbb{R}$ is monotone on [a, b], then show that $f \in \mathbb{R}[a, b]$.

- 29. State and prove Fundamental Theorem of Calculus (First Form).
- 30. Let (f_n) be a sequence of bounded functions on $A \in \mathbb{R}$. Then show that this sequence converges uniformly on A to a bounded function f if and only if for each $\varepsilon > 0$ there is a number H (ε) in N such that for all $m, n \ge H(\varepsilon)$ then $||f_m - f_n|| \le \varepsilon$.
- Show that the uniform limit of a sequence of continuous real valued functions on a subset of real
- Show that the improper integral $\int_0^1 \frac{1}{x} dx$ diverges.
- 33. Let f be a non-increasing function on $[1, \infty)$ such that $f(x) \ge 0$ $(l \le x < \infty)$. Then show that $\sum_{i=1}^{\infty} f(n)$ will diverge if $\int_{1}^{\infty} f(x) dx$ diverges.
- 34. Derive a relation between Beta and Gamma function.

 $(6 \times 7 = 42 \text{ marks})$

Section D

Answer any two out of three questions. Each question carries 13 marks.

- Show that a continuous function on a closed and bounded interval I can be approximated arbitrarily closely by step function.
- 36. Let $f:[a,b] \to \mathbb{R}$ and let $c \in (a,b)$. Then show that $f \in \mathbb{R}[a,b]$ if and only if its restriction to [a, c] and [c, b] are both Riemann integrable. In this case show that $\int_a^b f = \int_a^c f + \int_a^b f$.
- 37. (a) Let $f_n(x) := 1/(1+x)^n$ for $x \in [0,l]$. Find the pointwise limit f of the sequence f_n on [0, 1]. Does f_n converge uniformly to f on [0, 1]?
 - (b) Let (c_n) be a decreasing sequence of positive numbers. If $\sum c_n \sin nx$ is uniformly convergent, then show that $\lim (nc_n) = 0$.

 $(2 \times 13 = 26 \text{ marks})$