SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2013

 (CCSS)Mathematics-(Elective Course)
MM 6B 13 (E 02)-LINEAR PROGRAMMING AND GAME THEORY
(2009 Admissions)
Time : Three Hours
Maximum : 30 Weightage

Part I

Answer all questions.

1. Maximum $Z=2 x_{1}+3 x_{2}$ subject to $x_{1}-x_{2} \leq 5,3 x_{1}+2 x_{2} \geq 1, x_{1} \geq 0, x_{2} \geq 0$ is a:
(a) Linear programming problem.
(b) Quadratic programming problem.
(c) Transportation problem.
(d) Assignment problem.
2. Define an objective function of a linear programming problem.
3. What is a slack variable ?
4. Which of the following is a convex set in R^{2} ?
(a) $\{(1,0),(0,1)\}$.
(b) $\{(x, y) / y=\sin x\}$.
(c) $\left\{(x, y) / x^{2}+y^{2}=1\right\}$.
(d) $\{(x, y) / a \leq x \leq b\}$.
5. Define a convex hull of a set in E^{n}.
6. Define a convex combination of the vectors $a_{1}, a_{2}, \ldots . . a_{n}$ in R^{n}.
7. Write an ortho normal basis of R^{3}.
8. Find a basic feasible solution of $x_{1}+2 x_{2}-x_{3}+x_{4}=4, x_{1}-x_{2}+2 x_{3}-x_{4}=-2$ taking x_{3} and x_{4} as non-basic variables.
9. The set $\left\{(x, y) \in \mathrm{E}^{2} / 2 x-y>0\right\}$ is :
(a) Closed and bounded.
(b) Closed and convex.
(c) Open and convex.
(d). Compact and convex.
10. What is a zero-sum game?
11. Determine the dual of:

$$
\text { Minimize } \mathrm{Z}=4 x_{1}-x_{2}
$$

subject to

$$
\begin{aligned}
x_{1}+x_{2} & \leq 4, \\
2 x_{1}-x_{2} & \geq 3, \\
x_{1} & \geq 0, \\
x_{2} & \geq 0 .
\end{aligned}
$$

12. Define a translate of set S in a vector space.
($12 \times \frac{1}{4}=3$ weightag

Part II

Answer all questions.

13. Show that $(1,1,0),(0,2,1)$ and $(1,-1,2)$ is a linearly independent set.
14. Express $(1,3)$ as a linear combination of $(1,2)$ and $(2,3)$.
15. Find a feasible solution of the system :

$$
\begin{aligned}
& x_{1}+2 x_{2}=10, x_{1}+x_{3}=4 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 .
\end{aligned}
$$

16. Prove that intersection of two convex set is convex.
17. Rewrite the following L.P.P. in the standard form :

Maximize $Z=3 x-2 y$
subject to

$$
\begin{aligned}
x-y & \leq 1, \\
3 x-2 y & \leq 6, \\
x & \geq 0, \\
y & \geq 0 .
\end{aligned}
$$

18. Obtain the dual of the L.P.P. :

Maximize $Z=3 x_{1}+4 x_{2}$
subject to

$$
\begin{aligned}
x_{1}-x_{2} & \leq 1, \\
x_{1}+x_{2} & \geq 4, \\
x_{1}-3 x_{2} & \leq 3, \text { and } \\
x_{1} & \geq 0, \\
x_{2} & \geq 0,
\end{aligned}
$$

19. State the fundamental theorem of Game theory.
20. Give an example of a balanced transportation problem.
21. Find a non-degenerate basic feasible solution of the system

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}+x_{4}=4 \\
& x_{1}-x_{2}+2 x_{3}-x_{4}=2
\end{aligned}
$$

($9 \times 1=9$ weightage)

Part III

Answer any five questions.

22. Find graphically the feasible space of the following in equations :

$$
x_{1}+2 x_{2} \leq 7, \quad x_{1}-x_{2} \leq 4, \quad x_{1} \geq 0, \quad x_{2} \geq 0
$$

23. Show that the points $(1,2,1)(2,3,0)$ and $(1,2,2)$ form a basis for E^{3}.
24. Prove that convex hull of a set S in E^{n} consists of all convex combination of elements of S.
25. Find the convex hull of the set

$$
\mathrm{S}=\{(1,2)(3,7)(2,-1)\}
$$

26. Prove that if a constant is added to any row or column of the cost matrix of an assignment problem, an optimal solution of the original problem remains optimal for the new problem.
27. Using north-west corner rule find an initial solution to the transportation problem :

28. A company has 3 senior executives. Each is judged against each of the 3 positions and their rating are given by :

	Position			
		I	II	III
Executives	E_{1}	7	5	6
	E_{2}	8	4	7
	E_{3}	9	6	4

Assign each executive to one position so that sum of ratings for all 3 is highest.

Part IV

Answer any two questions.
29. Solve by principle of duality :

Maximize $Z=3 x_{1}-2 x_{2}$ subject to

$$
\begin{array}{r}
x_{1} \leq 4, \quad x_{2} \leq 6 \\
x_{1}+x_{2} \leq 5, \quad x_{2} \geq 1 \\
x_{1} \geq 0, \quad x_{2} \geq 0
\end{array}
$$

30. Find a basic solution by Vogel's approximation method :

	D_{1}	D_{2}	D_{3}	D_{4}	
O_{1}	6	1	9	3	70
O_{2}	11	5	2	8	55
O_{3}	10	12	4	7	90
85					35

31. Solve the game using principle of Dominance :

$$
\text { Player A }
$$

