Reg. No.....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2013

(CCSS)

Mathematics—(Elective Course)

MM 6B 13 (E 02)—LINEAR PROGRAMMING AND GAME THEORY

(2009 Admissions)

Time: Three Hours

Maximum: 30 Weightage

Part I

Answer all questions.

- 1. Maximum $Z = 2x_1 + 3x_2$ subject to $x_1 x_2 \le 5$, $3x_1 + 2x_2 \ge 1$, $x_1 \ge 0$, $x_2 \ge 0$ is a:
 - (a) Linear programming problem.
 - (b) Quadratic programming problem.
 - (c) Transportation problem.
 - (d) Assignment problem.
- 2. Define an objective function of a linear programming problem.
- 3. What is a slack variable?
- 4. Which of the following is a convex set in R²?
 - (a) $\{(1, 0), (0, 1)\}.$
- (b) $\{(x, y)/y = \sin x\}$.
- (c) $\{(x, y)/x^2 + y^2 = 1\}$. (d) $\{(x, y)/a \le x \le b\}$.
- 5. Define a convex hull of a set in \mathbb{R}^n .
- 6. Define a convex combination of the vectors a_1, a_2, \dots, a_n in \mathbb{R}^n .
- 7. Write an ortho normal basis of \mathbb{R}^3 .
- 8. Find a basic feasible solution of $x_1 + 2x_2 x_3 + x_4 = 4$, $x_1 x_2 + 2x_3 x_4 = -2$ taking x_3 and x_4 as non-basic variables.
- 9. The set $\{(x, y) \in E^2 / 2x y > 0\}$ is:
 - (a) Closed and bounded.
- (b) Closed and convex.
- (c) Open and convex.
- (d). Compact and convex.
- 10. What is a zero-sum game?

11. Determine the dual of:

Minimize
$$Z = 4x_1 - x_2$$
 subject to

$$x_1 + x_2 \le 4$$
,
 $2x_1 - x_2 \ge 3$,
 $x_1 \ge 0$,
 $x_2 \ge 0$.

12. Define a translate of set S in a vector space.

$$(12 \times \frac{1}{4} = 3 \text{ weightag})$$

Part II

Answer all questions.

- 13. Show that (1, 1, 0), (0, 2, 1) and (1, -1, 2) is a linearly independent set.
- 14. Express (1, 3) as a linear combination of (1, 2) and (2, 3).
- 15. Find a feasible solution of the system:

$$x_1 + 2x_2 = 10$$
, $x_1 + x_3 = 4$
 $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$.

- 16. Prove that intersection of two convex set is convex.
- 17. Rewrite the following L.P.P. in the standard form:

Maximize
$$Z = 3x - 2y$$
 subject to

$$x-y \le 1,$$

$$3x-2y \le 6,$$

$$x \ge 0,$$

$$y \ge 0.$$

18. Obtain the dual of the L.P.P.:

Maximize
$$Z = 3x_1 + 4x_2$$
 subject to

$$x_1 - x_2 \le 1$$
,
 $x_1 + x_2 \ge 4$,
 $x_1 - 3x_2 \le 3$, and
 $x_1 \ge 0$,
 $x_2 \ge 0$.

- 19. State the fundamental theorem of Game theory.
- 20. Give an example of a balanced transportation problem.
- 21. Find a non-degenerate basic feasible solution of the system

$$x_1 + 2x_2 - x_3 + x_4 = 4$$

$$x_1 - x_2 + 2x_3 - x_4 = 2.$$

 $(9 \times 1 = 9 \text{ weightage})$

Part III

Answer any five questions.

22. Find graphically the feasible space of the following in equations:

$$x_1 + 2x_2 \le 7$$
, $x_1 - x_2 \le 4$, $x_1 \ge 0$, $x_2 \ge 0$.

- 23. Show that the points (1, 2, 1) (2, 3, 0) and (1, 2, 2) form a basis for E³.
- 24. Prove that convex hull of a set S in E'' consists of all convex combination of elements of S.
- 25. Find the convex hull of the set

$$S = \{(1, 2) (3, 7) (2, -1)\}.$$

- 26. Prove that if a constant is added to any row or column of the cost matrix of an assignment problem, an optimal solution of the original problem remains optimal for the new problem.
- 27. Using north-west corner rule find an initial solution to the transportation problem:

	D_1	D_2	D_3	
O_1	2	1	3	8
O_2	1	4	5	5
O_3	2	3	4	7
	6	9	5	,

28. A company has 3 senior executives. Each is judged against each of the 3 positions and their rating are given by:

	Position				
		1	II	III	
Executives	$\mathbf{E_1}$	7	5	6	
	E ₂	8	4	7	1
	E ₃	9	6	4	

Assign each executive to one position so that sum of ratings for all 3 is highest.

 $(5 \times 2 = 10 \text{ weightage})$

Turn over

Part IV

Answer any two questions.

29. Solve by principle of duality:

Maximize
$$Z = 3x_1 - 2x_2$$
 subject to

$$x_1 \le 4, \quad x_2 \le 6,$$

 $x_1 + x_2 \le 5, \quad x_2 \ge 1$
 $x_1 \ge 0, \quad x_2 \ge 0.$

30. Find a basic solution by Vogel's approximation method:

	D_1	D_2	D_3	D_4	
01	6	1	9	3	70
O_2	11	5	2	8	55
03	10	12	4	7	90
	85	35	50	45	

31. Solve the game using principle of Dominance:

		Pl	ayer B	
Player A	3	2	4	0
	3	4	2	4
	4	2	4	0
	0	4	0	8

 $(2 \times 4 = 8 \text{ weightage})$