\qquad
\qquad

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, JANUARY 2013

(CCSS)

Physics

PHI B01-METHODOLOGY OF SCIENCE AND PHYSICS
Time : Three Hours
Maximum : 30 Weightage

Section A

Answer all twelve questions.
Each question carries $1 / 4$ weightage.

1. If speed of light were less than it is, the relativistic phenomena would be :
(a) Less Conspicuous than they are now.
(b) More Conspicuous than they are now.
(c) Same as now.
(d) Unpredictable.
2. A frame of reference which moves with constant velocity with respect to stationary frame of reference is called :
(a) Inertial frame.
(b) Non-inertial frame.
(c) Rotating frame.
(d) Absolute frame.
3. Total K.E. of ideal mono atomic gas molecule is :
(a) KT.
(b) $1 / 2 \mathrm{KT}$.
(c) $3 / 2 \mathrm{KT}$.
(d) KT .
4. The Penetrating power of X-Rays increases with the :
(a) Increase in velocity.
(b) Increase in frequency.
(c) Increase in intensity.
(d) Decrease in velocity.
5. The Photon of frequency v has a speed C, its momentum is:
(a) $\frac{h v}{c^{2}}$.
(b) $\frac{h \nu}{c}$.
(c) $\frac{v}{c}$.
(d) $h v$.
6. In photoelectric effect, the number of photoelectron emitted is proportional to :
(a) Intensity of incident beam.
(b) Frequency of incident beam.
(c) Velocity incident beam.
(d) Work function of photo cathode.
7. If $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ are respective kinetic energy of an electron, an alpha-particle, a proton, each having same de-Broglie wavelength then :
(a) $\mathrm{E}_{1}>\mathrm{E}_{3}>\mathrm{E}_{2}$.
(b) $\mathrm{E}_{2}>\mathrm{E}_{3}>\mathrm{E}_{1}$.
(c) $\mathrm{E}_{1}>\mathrm{E}_{2}>\mathrm{E}_{3}$.
(d) $\mathrm{E}_{1} \geq \mathrm{E}_{3}=\mathrm{E}_{2}$.
8. If N be the population in ground state and N_{2} be the population in exited state, during population inversion :
(a) $\mathrm{N}_{1}=\mathrm{N}_{2}$.
(b) $\mathrm{N}_{1}>\mathrm{N}_{2}$.
(c) $\mathrm{N}_{1}=\mathrm{N}_{2}=0$.
(d) $\mathrm{N}_{2}>\mathrm{N}_{1}$.
9. The line integral per unit are along the boundary p.f. small area around a point in vector field A is called :
(a) $\operatorname{grad} \mathrm{A}$.
(b) $\operatorname{div} \mathrm{A}$.
(c) curl A .
(d) line integral of A .
10. Which of the following matrices is Hermitian ?
(a) $\begin{array}{cc}0 & i \\ i & 0\end{array}$.
(b) $\begin{array}{cc}0 & i \\ -i & 0\end{array}$.
(c) $\begin{array}{ll}i & 0 \\ 0 & 1\end{array}$.
(d) $\begin{array}{cc}i & 0 \\ 0 & -i\end{array}$.
11. Scientific theories must not be :
(a) Correctable.
(b) Testable.
(c) Reliabled.
(d) Biased.
12. The recipient of First Nobel Prize for physics was :
(a) Einstein.
(b) Planck.
(c) Rontgen.
(d) Newton.
($12 \times 1 / 4=3$ weightage)

Section B

Answer all nine questions.
Each question carries 1 weightage.
13. What is meant by length contraction ?
14. What is Compton effect? Mention its significance.
15. List out the main features of continuous X-ray spectrum.
16. What is it that varies in the case of matter waves?
17. What are the characteristic of black body spectra?
18. What is meant by metastable state? Write two materials they posses metastable state.
19. State and explain Green's theorem.
20. What is the significance of peer review ?
21. Mention important steps of scientific method.

Section C

Answer any five questions from seven.
Each question carries 2 weightage.
22. Find out eigen values of $A=\left[\begin{array}{ll}3 & -1 \\ 4 & -2\end{array}\right]$.
23. If H is a Hermitian matrix and U is a Unitary matrix. Prove that $\mathrm{U}^{-1} \mathrm{HU}$ is Hermitian.
24. Find out the values of a, b, c such that

$$
\mathrm{F}=(3 x-4 y+a z) \hat{i}+(c x+5 y-2 z) \hat{j}+(x-b y+7 z) \hat{k} \text { is irrotational. }
$$

25. Distinguish between spontaneous and stimulated emission.
26. A space craft is moving relative to earth, an observe on earth find that, according to her clock, 3601 s elapse between 1 p.m. and 2 p.m. on the space crafts clock. What is the space craft's speed relative to earth.
27. Find the shortest wavelength present in radiation from X-ray machine of accelerating potential is 50 kV .
28. Find the de-Broglie wavelength of a 46 g golf ball moving with the a velocity of $10 \mathrm{~m} / \mathrm{s}$.

$$
(5 \times 2=10 \text { weightage })
$$

Section D

Answer any two questions from three.

Each question carries 4 weightage.
29. What are de-Broglie waves ? Develop equations for de-Broglies wavelength (a) In terms of mass and velocity of particle ; (b) In terms of mass and K.E. of particle.
30. Explain the necessity of experimental design.
31. Explain about spherical polar co-ordinate :
(a) Write down equations to connect Cartesian co-ordinate and spherical co-ordinate.
(b) Express infinitesimal displacement $\mathbf{d l}$ in spherical polar co-ordinate.
(c) Translate gradient and divergence in spherical polar co-ordinate.

