Reg.	No		
4.6.4.36.	4.7.70	 	

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2017

(CUCBCSS-UG)

Core Course-Physics/Applied Physics

PHY 2B 02 / APY 2B 02-PROPERTIES OF MATTER, WAVES AND ACQUISTICS

me: Three Hours Maximum: 80 Marks

Section A

Answer all questions.

1 mark each.

- The Young's modulus of a wire of length L and radius 'r' is Y Nm⁻². If the length is reduced to L/2 and radius r/2, its Young's modulus will be ________.
- 2. The value of Poisson's ratio cannot be:
 - (a) 0.01.

(b) 0.1.

(c) 0.4.

- (d) 0.6.
- When the amplitude of a particle executing simple harmonic motion increases, the time period————.
- 4. The maximum possible acceleration for a simple harmonic oscillator is
 - (a) m2u-

(b) $\omega \sqrt{a^2 - x^2}$.

(e) ma.

- (d) 000°
- 5. Write an expression for the quality factor?
- 6. In a simple harmonic motion, when the displacement is one half the amplitude, what fraction of the total energy is kinetic?
 - (a) 0.

(b) 1/4

(c) 1/2

- (d) 3/4.
- 7. Write the relation between wave velocity and group velocity of a wave?

Turn over

- 8. What is the frequency of second overtone, if the fundamental frequency of vibration for a transverse wave is 'a'?
- 9. Which of the following expressions is that of a progressive wave?
 - (a) asin(at-lec).

(b) usin of.

(e) acos kx.

- (d) asin of cos kx.
- The loudness of sound is related to of the sound wave.

 $(10 \times 1 = 10 \text{ mark})$

Section B

Answer all questions.

Write in two or three sentences,

2 marks each.

- 11. Derive a relation for workdone per unit volume in shearing strain.
- 12. Define the three modulii of elasticity.
- 13. Discuss the vibrational states of a diatomic molecule.
- 14. Give the theory of forced harmonic oscillator.
- 15. What do you mean by energy density of a plane progressive wave?
- 16. Give the general equation of a wave motion. What is its significance?
- 17. State sabine's reverberation formula.

 $(7 \times 2 = 14 \text{ mat})$

Section C

Write any five questions.

Write in one paragraph.

4 marks each

- 18. (a) Define flexural rigidity.
 - (b) Find the workdone in a twisting cylinder.
- 19. Find an expression for the bending moment of a horizontal beam clamped at one end and is at the other?
- 20. Derive the expression for KE and PE of a simple harmonic oscillator.
- 21. Derive the expression for average power dissipation for a damped harmonic oscillator.

- 22. Obtain the expression for period of a simple pendulum.
- 23. Prove that variation of pressure in the case of a longitudinal progressive wave travelling through a gas is given by P = -E dy/dy.
- 24. Write a brief note on acoustics of buildings.

 $(5 \times 4 = 20 \text{ marks})$

Section D

Solve any four problems. 4 marks each.

- Find the stress to be applied to a steel wire to stretch it by 0.25% of its original length. Young's modulus for steel is 90 GPa.
- Find the amount of workdone in twisting a steel wire of radius 10⁻³ m and length 0.25 m through an angle of 45°. The rigidity modulus of the material of the wire is 8 × 10¹⁰N/m².
- 27. A particle executing simple harmonic motion has an acceleration 0.03 m/s² when its displacement is 0.09 m. Find the time period of oscillation?
- 28. A particle in simple harmonic motion has velocity values 6 m/s and 5 m/s when its distance from the equilibrium positions are 2 cm and 3 cm respectively. Find the amplitude and frequency of oscillation?
- 29. If the potential energy of a harmonic oscillator in its resting position is 5 joules and the total energy is 9 joules, when the amplitude is 1 m, what is the force constant? If it's mass is 2 kg, what is the period?
- 30. If in air, a plane wave of frequency 256 Hz and amplitude 1000 mm is produced, calculate the radiated energy per unit volume and the energy current. Density of air = 1.29 kg/m³ and velocity of sound in air is 332 m/s.
- 31. Calculate the change in intensity level when the intensity of sound increases 100 times its original intensity.

(4 × 4 = 16 marks)

Turn over

Section E

Write any two questions. 10 marks each.

- 32. With relevant theory, explain how the Young's modulus of the material of a cantilever can be determined?
- 33. Deduce the differential equation for a damped harmonic oscillator and discuss in the cases of a critical damping and under damping.
- 34. State fourier's theorem. Give the conditions for the applicability of fourier's theorem. Apply it to a sawtooth wave.
- 35. Discuss the production, properties and applications of ultra sonics. How are they detected?

 $(2 \times 10 = 20 \text{ marks})$