Name	
Reg. No.	

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2015

(CUCBCSS-UG)

Complementary Course

Physics

PH2 C02-MECHANICS, RELATIVITY, WAVES AND OSCILLATIONS

ne : Three Hours

Maximum: 80 Marks

Section A

Answer all questions. Each question carries 1 mark.

- 1. Any frame of reference moving relative to an identical frame with constant velocity will be
- 2. Two colliding particle in CM frame approaches as well as separate with
- 3. Multistage rockets are used in practice to
- Give the expression for the relativistic equivalence of mass and energy.
- What happens to amplitude as time increases during damping?
- By which theorem can you explain the different quality of sound produced by different musical instruments?
- According to Schrödinger a particle is equivalent to a
- tte whether the following statements are True / False :--
- The speed of a comet is highest at its Aphelion.
- An electron microscope can magnify objects by 10X.
- A collision is said to be elastic if the kinetic energy is conserved.

 $(10 \times 1 = 10 \text{ marks})$

Section B

Answer all questions. Each question carries 2 marks.

- Does a flying projectile experience deviations due to Coriolis force? Explain.
- Distinguish between internal and external forces.

- 14. Give two important kinematical features which are derived from the special theory of relativity. Turn over

- 15. Explain profer time interval.
- 16. What is logarithmic decrement ?
- 17. Distinguish between elastic and inelastic collisions.
- 18. What is intensity of a wave. Give the inverse square law.
- Explain probability density.
- 20. What is an operator? Give example.

 $(7 \times 2 = 14 \text{ ma})$

Section C

Answer any five questions. Each question carries 4 marks.

- Explain non inertial frames and factious forces.
- 22. What is a central force? Show that the central forces are conservative.
- 23. State the law of conservation of angular momentum. Explain one application.
- 24. How does mass change with velocity? Show that 'c' is the ultimate speed of the particles.
- 25. Prove that for a harmonic oscillator the average PE and average KE are equal.
- 26. State Fourier's theorem. What are its conditions of applicability? Analyze a saw tooth curve
- 27. What are eigen values and eigen functions? Illustrate with examples.

 $(5 \times 4 = 20 \text{ m})$

Section D

Answer any four questions. Each question carries 4 marks.

- 28. Prove that the total angular momentum of an isolated system of particles is conserved.
- Prove that in a perfectly elastic collision the total final KEn of the colliding particles is equation their inertial KE.
- 30. What will be the apparent length of a meter stick measured by an observer at rest, when these is moving with a velocity of 0.851C.
- 31. The average lifetime of a neutron as a free particle at rest is 15 minutes. It disintegral spontaneously into an electron, proton and neutrino. What is the average minimum velocity which a neutron must leave the sun to reach the earth before breaking 1.29 ? Distance between the sun = 11 × 10⁷ km.
- 32. A plane wave of frequency 256 Hz and amplitude 0.001 mm is produced in air. Calculated energy density and energy current, given velocity of sound in air = 332 m/s and density air = 1.29 kg/m³.
- 33. A mass of 1.6 kg extends a spring by 6 cm from its unstretched position. The mass is replaced a body of mass 50 gm. Find the period of oscillation if the mass is pulled and released?
- 34. Obtain the time dependent Schrödinger equation in three dimensions.

 $(4 \times 4 - 16)$

Section E

Answer any two questions. Each question carries 10 marks.

- 35. Prove that the linear momentum of a system of particles in centre of mass frame is zero.
- 36. State the postulates of the special theory of relativity and hence derive the Lorentz transformation
- 37. Write notes on :
 - (a) Electron microscope;
 - (b) Scanning tunneling microscope.
- 38. Prove that the pressure variations in a medium due to a sound wave is P = E dy/dx. Hence show that the velocity of longitudinal waves in a gas depends on elasticity and density of the medium.

 $(2 \times 10 = 20 \text{ marks})$