-		-	-	_	_
	~				_
D	100			~	
_	-	-	-	-	
	-		-	-	

(Pages: 3)

Nam	e

Reg. No....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2018

(CUCBCSS-UG)

Complementary Course

PHY 2C 02-MECHANICS, RELATIVITY, WAVES AND OSCILLATIONS

Time: Three Hours

Maximum: 64 Marks

Section A

Answer all questions.

Each question carries 1 mark.

Answer in a word or phrase.

1. The centrifugal force acting on a particle of mass m, rotating with angular velocity $\frac{1}{0}$ is :

(a)
$$-m(\vec{\omega} \times \vec{r})$$
.

(b)
$$-m\left(\overline{\omega}\times\frac{d\overline{r}}{dt}\right)$$
.

(c)
$$-m\left(\frac{d\vec{\omega}}{dt} \times \vec{r}\right)$$
.

(d)
$$-2m\left(\vec{\omega} \times \frac{d\vec{r}}{dt}\right)$$
.

2. When speed of rod along its length is increased, the length of rod :

(a) Increases.

- (b) Decreases.
- (c) Remains unchanged.
- (d) Becomes zero.

3. The mass of an electron is double its rest mass then the velocity of the electron :

(a) c/2

(b) 2c.

(c) $\frac{\sqrt{3}}{2}c$.

(d) $\sqrt{\frac{3}{2}}$ c.

4. Energy density for a plane harmonic wave is -

5. A train moving with constant velocity is:

- (a) An inertial frame.
- (b) A non-inertial frame.
- (c) Something inertial and sometimes non-inertial frame.
- (d) Neither inertial nor-inertial frame.

- 6. The total energy of a particle executing SHM is proportional to :
 - (a) Displacement from equilibrium position.
 - (b) Frequency of oscillation.
 - (c) Velocity in equilibrium position.
 - (d) Square of amplitude of motion.
- 7. The relativistic relation between momentum p and energy E is:

(a)
$$E = \frac{p^2}{2m}$$
.

(b)
$$E = p^2c^2 + m_0^2c^4$$
.

(c)
$$\mathbb{E} = \sqrt{p^2c^2 + m_0^2}c^4$$
.

(d)
$$E = \frac{p^2}{2m} + m_0 c^2$$
.

- 8. Which of the following is a Galilean invariant:
 - (a) Velocity.

(b) Acceleration.

(c) Both of these.

- (d) None of these.
- 9. The motion of one projectile as seen from another projectile is :
 - (a) A straight line.

(b) A parabola.

(c) A circle.

- (d) An ellipse.
- 10. At what speed the length of rod becomes half of its proper length:
 - (a) c/2

(b) $\frac{c}{\sqrt{2}}$

(c) $\frac{\sqrt{3}}{2}c$.

(d) $\sqrt{\frac{3}{2}}$ c.

 $(10 \times 1 = 10 \text{ marks})$

Section B

Answer all questions.

Each question carries 2 marks.

Answer in a short paragraph - three or four sentences.

- 11. Name the types of frames of reference. Differentiate between them.
- 12. Give two examples of conservative and two examples of non-conservative forces.
- 13. What do you mean by time dilation?
- 14. Explain the hypothesis of Galilean invariance.
- 15. What is centrifugal force? Illustrate with example.
- 16. What is the significance of wave function?
- 17. Why was the Michelson Moreley experiment performed ?

Section C

Answer any three questions. Each question carries 4 marks. Answer in a paragraph of about half a page to one page.

- 18. Derive an equation for the energy density of a wave.
- 19. Write a note on electron microscope.
- 20. Show that motion of a particle under a central force takes place in a plane.
- 21. Explain the twin paradox.
- 22. Explain Lorentz Fitzgerald contraction and derive an expression for the same.

 $(3 \times 4 = 12 \text{ marks})$

Section D

Answer any three questions.

Each question carries 4 marks.

Problems-write all relevant formulas.

All important steps carry separate marks.

- A particle of rest mass m is moving with a velocity 0.9c, calculate (i) its relativistic mass; (ii) its kinetic energy.
- 24. The potential energy possessed by a particle moving under the influence of a conservative force is given by $U(x) = x^3 9x^2 + 24x$. Find the force on the particle.
- 25. A pendulum is of length 50 cm. Find its period when it is suspended in (i) a lift falling at a constant velocity of 5 m/s. (ii) a lift rising at a constant acceleration of 2 m/s.²
- 26. Consider a ship moving with a uniform velocity of 18 m/s relative to the earth. Let a ball be rolled at a speed of 2 m/s. relative to the ship, in the direction of motion of the ship. Find the speed of the ball relative to the earth, according to Galilean transformations.
- 27. A young man goes to the pole star and comes back to the earth on a rocket. Calculate the age difference between him and his twin brother who preferred to stay on the earth. The rocket velocity υ = (4/5) c and the distance between the earth and the pole star is 40 light years. (Light year is a unit of distance, 1 light year = 3 × 10⁸ × 60 × 60 × 24 × 365 m.)

 $(3 \times 4 = 12 \text{ marks})$

Section E

Answer any two questions.

Each question carries 8 marks.

(Essays. Answer in about two pages).

- 28. What is ether hypothesis? Explain the Michelson Morley experiment.
- Derive the time dependent Schrödinger equation.
- Derive the differential equation of a particle executing simple harmonic motion. Also derive expression for its period, velocity and acceleration.
- 31. Mention the consequences of special theory of relativity and derive Einstein's mass energy relation.

 $(2 \times 8 = 16 \text{ marks})$