D 51474

(Pages : 3)

Name..... Reg. No....

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2013

(UG-CCSS)

Core Course—Physics/Applied Physics

PH 3B 05/AP 3B 05-MECHANICS

(Common for Physics and Applied Physics)

Time : Three Hours

Maximum : 30 Weightage

- I. Objective Type Questions. Answer all twelve questions :
 - 1 For two inertial frames connected by Galilean transformations, which among the following physical quantity is observed to be the same ?
 - (a) Co-ordinate. (b) Velocity.
 - (c) Momentum. (d) Acceleration.
 - 2 The only fictitious force acting on a particle at rest in a rotating frame is :
 - (a) Centrifugal force. (b) Coriolis force.
 - (c) Gravitational force. (d) Electromagnetic force.

3 For a conservative system, which among the following quantity is conserved?

- (a) Kinetic energy.
- (b) Potential energy.
- (c) Sum of kinetic and potential energy.
- (d) Difference of kinetic and Potential energy.
- 4 Identify the non-conservative force :
 - (a) Elastic force. (b) Frictional force.
 - (c) Gravitational force. (d) Electrostatic force.
- 5 The moment of linear momentum is :
 - (a) Force. (b) Torque.
 - (c) Angular momentum. (d) Energy.

6 The planar motion in planetary system is a result of the law of conservation of :

- (a) Linear momentum. (b) Kinetic energy.
- (c) Potential energy. (d) Angular momentum.

				2	D 51474
	7	When	two masses move apart, the	gravitat	tional potential energy :
		(a)	Decreases.	(b)	Increases.
		(c)	May increase or decrease.	(d)	Will not change.
	8 The period of a satellite in a circular orbit of radius R is T. The period of circular orbit of radius 4R is :				f radius R is T. The period of another satellite in a
		(a)	4T.	(b)	8T.
	-	(c)	16T.	(d)	32T.
	9	Accord system	ding to the principle of virtual n in equilibrium.	work, t	he work done by the applied forces ——— for a
		(a)	Remains constant.	(b)	Is infinity.
		(c)	Vanishes.	(d)	Is high.
	10 The momentum conjugate to a cyclic co-ordinate is :				inate is :
		(a)	Zero.	(b)	Infinity.
		(c)	Conserved.	(d)	None of these.
	11 Michelson-Morley experiment confirmed that :				at:
	*	(a)	There is an absolute frame.	(b)	There is no absolute frame.
		(c)	Velocity of light is relative.	(d)	Velocity of light is zero.
	12	What	is the speed of a particle of zer	ro rest r	nass?
		(a)	Zero.	(b)	Infinity.
		(c)	c.	(d)	None of these.
					$(12 \times \frac{1}{4} = 3 \text{ weightage})$
II.	Short Answer Type Questions. Answer all nine questions. Each question carries a weight of 1:				
	13	13 Define Newton's second law. Show that when there is no applied force on a body, its velocity is conserved.			
	14	14 Discuss the effects of Coriolis force as a result of earth's motion.			
	15	15 What is the what is in the second second			

- 15 What is the relation between Force and Potential energy for a conservative system ?
- 16 Write down an expression for the position vector of the center of mass of a system of two particles m_1 and m_2 having position vectors r_1 and r_2 .
- 17 What do you mean by an inverse square law force ? Give example.
- 18 What is D'Alembert's principle?
- 19 What are the postulates of the special theory of relativity?
- 20 What do you mean by space time?
- 21 Write down the relation between Lagrangian and Hamiltonian. -

 $(9 \times 1 = 9 \text{ weightage})$

- III. Short Essay Type Questions. Answer any five questions. Each question carries a weight of 2 :
 - 22 Determine the time in which the plane of oscillation of a Foucault's pendulum makes a complete revolution if the pendulum is located at the equator.
 - 23 Show that the force given by $\mathbf{F} = (2xy + z^2)\hat{i} + x^2\hat{j} + 2xz\hat{k}$ is conservative.
 - 24 Three particles of masses 100, 200 and 400 grams have a velocity of 20 m/s magnitude along positive X, Y, Z axis having unit vectors \hat{i} , \hat{j} , \hat{k} respectively. Estimate the velocity of the first particle, if due to the force of attraction, the third particle stops and the velocity of the second particle becomes $(10\hat{j} + 5\hat{k})$.
 - 25 Estimate the potential energy of a mass of 1 kg. on the surface of earth assuming that the potential energy is zero at infinity. Given, the radius of earth = 6.4×10^6 m., mass of earth = 6×10^{24} kg.
 - 26 Estimate the number of degrees of freedom of a system of three particles connected in the form of a triangle in a three dimensional space.
 - 27 Obtain the Lagrange's equation for a one-dimensional harmonic oscillator.
 - 28 An electron and a positron practically at rest come together and annihilates. Estimate the energy releases.

 $(5 \times 2 = 10 \text{ weightage})$

- IV. Essay Questions. Answer any two questions. Each question carries a weight of 4:
 - 29 Discuss (a) work-energy theorem and energy function ; (b) stable and unstable equilibria using potential energy curve ; and (c) energy conservation in non-conservative systems.
 - 30 What do you mean by a central force ? Give examples. Show that the angular momentum about the origin is conserved when a particle moves in a central force. Obtain an expression for the escape velocity of a body from the surface of earth.
 - 31 Write down the Lorentz transformation equations for co-ordinates and time for two inertial frames. Discuss length contraction, time dilation and relativity of simultaneity based on the Lorentz transformations.

 $(2 \times 4 = 8 \text{ weightage})$