Name.
Reg. No. \qquad

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2013

(UG-CCSS)
 Core Course Physics/Applied Physics
 PH 3B 05/AP 3B 05-MECHANICS
 (Common for Physics and Applied Physics)

Time : Three Hours

Maximum : 30 Weightage
I. Objective Type Questions. Answer all twelve questions :

1 For two inertial frames connected by Galilean transformations, which among the following physical quantity is observed to be the same?
(a) Co-ordinate.
(b) Velocity.
(c) Momentum.
(d) Acceleration.

2 The only fictitious force acting on a particle at rest in a rotating frame is :
(a) Centrifugal force.
(b) Coriolis force.
(c) Gravitational force.
(d) Electromagnetic force.

3 For a conservative system, which among the following quantity is conserved?
(a) Kinetic energy.
(b) Potential energy.
(c) Sum of kinetic and potential energy.
(d) Difference of kinetic and Potential energy.

4 Identify the non-conservative force :
(a) Elastic force.
(b) Frictional force.
(c) Gravitational force.
(d) Electrostatic force.

5 The moment of linear momentum is :
(a) Force.
(b) Torque.
(c) Angular momentum.
(d) Energy.

6 The planar motion in planetary system is a result of the law of conservation of :
(a) Linear momentum.
(b) Kinetic energy.
(c) Potential energy.
(d) Angular momentum.

7 When two masses move apart, the gravitational potential energy :
(a) Decreases.
(b) Increases.
(c) May increase or decrease.
(d) Will not change.

8 The period of a satellite in a circular orbit of radius R is T. The period of another satellite in a circular orbit of radius $4 R$ is :
(a) 4 T .
(b) 8 T .
(c) 16 T .
(d) 32 T .

9 According to the principle of virtual work, the work done by the applied forces \qquad for a system in equilibrium.
(a) Remains constant.
(b) Is infinity.
(c) Vanishes.
(d) Is high.

10 The momentum conjugate to a cyclic co-ordinate is :
(a) Zero.
(b) Infinity.
(c) Conserved.
(d) None of these.

11 Michelson-Morley experiment confirmed that:
(a) There is an absolute frame.
(b) There is no absolute frame.
(c) Velocity of light is relative.
(d) Velocity of light is zero.

12 What is the speed of a particle of zero rest mass ?
(a) Zero.
(b) Infinity.
(c) c .
(d) None of these.
II. Short Answer Type Questions. Answer all nine questions. Each question carries a weight of 1 :

13 Define Newton's second law. Show that when there is no applied force on a body, its velocity is conserved.

14 Discuss the effects of Coriolis force as a result of earth's motion.
15 What is the relation between Force and Potential energy for a conservative system?
16 Write down an expression for the position vector of the center of mass of a system of two particles m_{1} and m_{2} having position vectors r_{1} and r_{2}.
17 What do you mean by an inverse square law force? Give example.
18 What is D'Alembert's principle?
19 What are the postulates of the special theory of relativity?
20 What do you mean by space time?
21 Write down the relation between Lagrangian and Hamiltonian. .
III. Short Essay Type Questions. Answer any five questions. Each question carries a weight of 2 :

22 Determine the time in which the plane of oscillation of a Foucault's pendulum makes a complete revolution if the pendulum is located at the equator.

23 Show that the force given by $\mathrm{F}=\left(2 x y+z^{2}\right) \hat{i}+x^{2} \hat{j}+2 x z \hat{k}$ is conservative.
24 Three particles of masses 100,200 and 400 grams have a velocity of $20 \mathrm{~m} / \mathrm{s}$ magnitude along positive $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axis having unit vectors $\hat{i}, \hat{j}, \hat{k}$ respectively. Estimate the velocity of the first particle, if due to the force of attraction, the third particle stops and the velocity of the second particle becomes $(10 \hat{j}+5 \hat{k})$.
25 Estimate the potential energy of a mass of 1 kg . on the surface of earth assuming that the potential energy is zero at infinity. Given, the radius of earth $=6.4 \times 10^{6} \mathrm{~m}$., mass of earth $=6 \times 10^{24} \mathrm{~kg}$.
26 Estimate the number of degrees of freedom of a system of three particles connected in the form of a triangle in a three dimensional space.
27 Obtain the Lagrange's equation for a one-dimensional harmonic oscillator.
28 An electron and a positron practically at rest come together and annihilates. Estimate the energy releases.

$$
(5 \times 2=10 \text { weightage })
$$

IV. Essay Questions. Answer any two questions. Each question carries a weight of 4 :

29 Discuss (a) work-energy theorem and energy function ; (b) stable and unstable equilibria using potential energy curve ; and (c) energy conservation in non-conservative systems.
30 What do you mean by a central force? Give examples. Show that the angular momentum about the origin is conserved when a particle moves in a central force. Obtain an expression for the escape velocity of a body from the surface of earth.
31 Write down the Lorentz transformation equations for co-ordinates and time for two inertial frames. Discuss length contraction, time dilation and relativity of simultaneity based on the Lorentz transformations.

$$
(2 \times 4=8 \text { weightage })
$$

