	-	0	4	0	9
)	7	4	*	v	-

(Pages: 2)

Nam	e
Reg.	No

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2014

(UG-CCSS)

Complementary Course-Physics PH 3C 05-OPTICS, LASER, ELECTRONICS AND COMMUNICATION

(2009-2012 Admissions)

me : Three Hours

Maximum: 30 Weightage

Part A

	Each question carries ¼ weightage.					
1.	No real light source emits — electromagnetic waves.					
2.	Coherent waves are ———,					
3.	For constructive interference to take place between two monochromatic light waves of wavelength λ the path difference should be ———.					
4.	To observe diffraction, the size of obstacle must be ———.					
5.	A diffraction pattern is obtained using a beam of red light. What happens if the Red light is replaced by blue light :					
	(a) No change.					
	(b) Diffraction bands become narrower and crowded together.					
	(c) Bands become broader and farther apart.					
	(d) Bands disappear.					
6.	. Diffraction fringes are — width.					
7.	Optically active substance are those which ———.					
8.	A laser is a source.					
9,	A Zener diode has a — in the breakdown region.					
10.	Voltage divider bias operates in the :					
	(a) Active region. (b) Cut-off region.					
	(c) Saturation region. (d) Breakdown region.					
11.	An AND gate is equivalent to a ————					
	A Colpitts oscillator uses :					
	(a) Tapped coil. (b) Inductive feedback.					
	(c) Tapped capacitance. (d) No tuned LC circuit. (12 × 4 = 3 weightage)					

Turn over

Part B

Answer all questions. Each question carries 1 weightage.

- Give two comparisons of Newton and Galilean telescopes.
- 15. Why is a soap bubble or thin film of oil spread over the surface of water appear coloured in sunlight?
- Explain the phenomenon of diffraction.
- Explain why a graying is designed to produce only two orders.
- Distinguish between polarized and unpolarized light.
- 19. What is Population Inversion?
- Draw the circuit of a full wave rectifier.
- 21. What is an optical fiber? How does it work?

 $(9 \times 1 = 9 \text{ weightage})$

Part C

Answer any five questions. Each question carries 2 weightage.

- 22. State and explain Fermat's principle of extremum path. Give an example where the path of ligh is a relative maximum.
- 23. What is a biprism? In a biprism experiment the edge piece is placed at a distance of 1.2 m. from the source. The distance between the virtual sources is 7.5 × 10⁻⁴ m. Find the wavelength of light if the eyepiece is moved transversely through a distance of 1.888 cm. for 20 fringes.
- 24. What are Fresnel half period zones? What is the radius of the first half period zone in a zone plate behaving like a convex lens of focal length 0.6 m. for light of wavelength 6000 Å.
- 25. Give the construction and working of a Nicol Prism. How is it used as an analyzer?
- 26. Explain the working of a Huygen's eyepiece. Why is it called a negative eyepiece?
- 27. Explain the principle and working of a He-Ne laser,
- 28. Explain the working of a Hartley oscillator.

Part D

 $(5 \times 2 = 10 \text{ weightage})$

Answer any two questions. Each question carries 4 weightage.

- 29. What are Newton's rings? How would you obtain Newton's rings with bright center? Describe and experiment to determine the wavelength of sodium light using Newton's rings.
- 30. What is a plane diffraction grating. Describe with theory how the wavelength of light is determined
- 31. Explain the construction and working of a CE amplifier. Draw the frequency response. What bandwidth? What are the merits of negative feedback?