D	4	*	a	0	n
n	-44	1	v	o	U

Time: Three Hours

	s:	44.1
 N CFW	100 4	-36 N
 R BG/N	100	40.5

Nam	e	
Reg.	No	

Maximum: 80 Marks

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2018

(CUCBCSS-UG)

Physics

PHY 4B 04/APY 4B04-ELECTRODYNAMICS-I

I. Answer all questions, each question carries 1 mark (in a word or phrase):

- 1 Give an example of a physical quantity to be quantized.
- 2 For a given potential difference does a capacitor store more or less charge with a dielectric than it does without a dielectric?
- 3 What is force on surface charge?
- 4 Can two different equipotential surface intersect?
- 5 What is Laplace equation?
- 6 What is bound charge?
- 7 Is there any difference between dielectric constant and dielectric strength?
- 8 Write down the expression for magnetic field of toroidal coil.
- 9 What is the use of magnetic vector potential?
- 10 Why electrostatic potential is a scalar?

 $(10 \times 1 = 10 \text{ marks})$

- II. Answer all questions, each question carries 2 marks (Answer in two or three sentences):
 - 11 Electric charge is quantized. What does this statement mean?
 - 12 A dipole in a uniform electric field experiences no net force. Is this statement true or false? Give the reason for your answer.
 - 13 State two properties of electric field.
 - 14 State mean value theorem.
 - 15 State the properties of solutions of Laplace's equation.
 - 16 What is bound currents?
 - 17 Discuss magnetic field inside matter.

 $(7 \times 2 = 14 \text{ marks})$

- III. Answer any five questions, each question carries 4 marks (Answer in a paragraph) :
 - 18 Derive the expression for capacitance of a parallel plate capacitor with partially filled dielectric.
 - 19 Briefly discuss the method of images.

- 20 Obtain Clausius-Mosotti formula.
- 21 Show that V . B = 0 .
- 22 Give a brief account of comparison of Magneto statics and electrostatics.
 - 23 Use Biot-Savart law to find the magnetic field inside and outside an infinitely long current carrying solenoid.
 - 24 Explain magneto static boundary condition.

 $(5 \times 4 = 20 \text{ marks})$

IV. Answer any four questions, each question carries 4 marks :

- An electron with a velocity of 2.4×10^6 m/s flies into a uniform electric field of intensity $135\,\mathrm{Vm^{-1}}$. It moves along a field line until it comes to a halt. Calculate the distance travelled by the electron within the field.
- 26 Three charges + 1.5q + 1.5q and 3q are placed at the vertices of an equilateral triangle of side b. Find the dipole moment of the charge distribution.
- 27 Dielectric constant of a gas at NTP is 1.000074. Calculate dipole moment of each atom of the gas when it is held in an external field of 3 × 104 Vm⁻¹
- 28 A wire shaped to regular hexagon of side 2 cm. carries a current of 2 amperes. Find the magnetic induction at the centre of the hexagon.
- 29 Derive an expression for the gyro magnetic ratio.
- 30 In the Rowland ring 2.0 amp current is passing through the winding of number of turns per unit length 10- turns /cm. Magnetic Induction measured is 1.0 weber/m.² Calculate (a) H, (b) M.
- 31 A toroidal winding of N turns surrounding a ferromagnetic specimen in which a narrow gap of width d has been cut. Calculate the value of magnetic field both in the gap and in the material.

 $(4 \times 4 = 16 \text{ marks})$

V. Answer any two questions, each question carries 10 marks:

- 32 Derive an expression for the potential at a point due to a uniformly charged spherical shell.
- 33 Obtain Laplace's equation in two and three dimensions. Explain the properties of the solutions. State mean value and maximum value theorem.
- 34 Explain the terms polarization and displacement. Derive the relation connecting them. Derive an expression for potential of polarized objects.
- 35 Discuss in detail the Ampere's law in Magnetized materials. Derive an expression for the magnetic field at any point inside and outside of a long copper rod of radius R carries a uniformly distributed current I.

 $(2 \times 10 = 20 \text{ marks})$