Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, NOVEMBER 2016

(UG-CCSS)

Physics

PH 5B 09—ELECTRODYNAMICS—II

(2013 Admissions)

ne: Three Hours

Maximum: 30 Weightage

- 1. Objective questions (Answer all questions);
 - 1 An inductor stores energy in :
 - (a) Its electric field.
- (b) Its magnetic field.
- (c) Its electric and magnetic fields. (d) Its coil.
- 2 The Poynting vector is:
 - (a) $\frac{\mu_0}{E \times B}$.

(b) $\frac{\mu_0}{E \cdot B}$.

(c) $\frac{\mathbf{E} \cdot \mathbf{B}}{\mu_0}$.

- (d) $\frac{\mathbf{E} \times \mathbf{B}}{\mu_0}$.
- 3 The speed of electromagnetic waves in free space is given by :
 - (a) μ₀ε₀.

(b) √μ₀ε₀-

(e) $\frac{1}{\sqrt{\mu_0 \epsilon_0}}$

- 4. The relation between the vectors electric field intensity E, electric flux density D and polarization P is:
 - (a) D = ε₀E + P.

(b) $\cdot \mathbf{E} = \epsilon_0 \mathbf{D} + \mathbf{P}$.

 $(e) \quad E = \, \epsilon_0 \, P + D.$

- (d) $E = \varepsilon_0 P D$.
- 5 The power factor of a series resonant circuit is:
 - (a) 1.

(b) -1.

(c) 0.

(d) Infinity.

Turn over

- 6 In an a.c. circuit with voltage V and current I, the power developed is :
 - (a) VI.
 - (b) VI 2
 - (c) $\frac{VI}{\sqrt{2}}$
 - (d) Depends on the phase relation between V and I.
- 7 Assuming L, C, R representing inductance, capacitance and resistance, respectively, the quantity which has the dimension of frequency is :
 - (a) RC.

(b) \(\frac{1}{\text{RC}}\).

(c) $\frac{RL}{C}$.

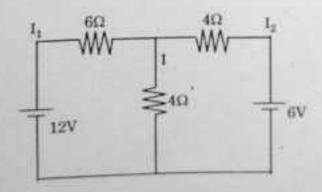
- (d) $\frac{C}{RL}$.
- 8 Kirchhoff's voltage law is concerned with:
 - (a) IR drops only.

- (b) Battery EMFs only.
- (c) Junction voltages only.
- (d) Both (a) and (b).

State whether the following statements are True or False:

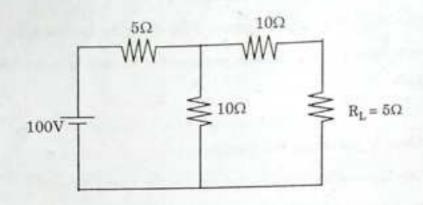
- 9 Self inductance of a coil depends on its geometry.
- 10 During one time constant, the current through a series LR circuit rises to 37 % of its final steady value.
- 11 An ideal constant voltage source has zero resistance.
- 12 Higher the resistance of a resonant circuit, better is its selectivity.

(12 × 1/4 = 3 weights;


- II. Short answer questions (Answer all questions):
 - 13 Explain Lenz's law in electromagnetic induction.
 - 14 Discuss the necessity of the term displacement current in Maxwell's equations.
 - 15 What do you mean by intensity of electromagnetic waves?
 - 16 Define the terms phase and phase constant of a sinusoidal wave.
 - 17 What do you mean by a plane wave and write down the equation for a plane wave-

- 18 Draw graphs representing over-damped, critically-damped and damped-oscillatory cases of the growth of charge in a series LCR circuit.
- 19 Discuss the term reactance of an a.c. circuit.
- 20 Draw the basic circuit of an a.c. bridge and write down the condition for balance.
- 21 Using j-operator, write down the voltage-current relationship in a purely inductive and a series LC circuit.

 $(9 \times 1 = 9 \text{ weightage})$


III. Short essay questions (Answer any five questions):

- 22 Write down the Maxwell's equations and explain the terms involved.
- 23 Write down the boundary conditions satisfied by electromagnetic fields at the interface between two media of different permeabilities and permittivities.
- 24 Write down the expression for energy density and momentum density of an electromagnetic wave.
- 25 A series combination having R = 1 MΩ and C = 0.02 μF is connected to a d.c. voltage source of 100 V. Determine (i) The time constant of the circuit; (ii) Capacitor voltage after 0.02 second; and (iii) Capacitor voltage after 0.04 second.
- 26 A pure resistance of 50 Ω is in series with a capacitance of 100 μF. The combination is connected to a 100 V, 50 Hz supply. Determine the (i) Impedance; (ii) Power factor; (iii) Voltage across resistance; and (iv) Voltage across capacitance.
- 27 Using superposition theorem, calculate the current in each branch of the following network:—

4

28 In the following figure, determine the current through the load resistance 5 Ω using Norton's theorem.

 $(5 \times 2 = 10 \text{ weightage})$

IV. Essay questions (Answer any two questions):

- 29 Obtain the wave equation for the electric and magnetic field vectors E and B in free space.
 Discuss the term polarization and prove that electromagnetic waves are transverse in nature.
- 30 What is the working principle of a ballistic galvanometer? Obtain an expression relating the charge flowing through a ballistic galvanometer and the corresponding deflection.
- 31 Obtain the relation between voltage and current in a series LCR circuit. Discuss the resonance of the circuit.

 $(2 \times 4 = 8 \text{ weightage})$