				/
90914	(Pages :	3)	Name	
			Reg. No	
FIFTH SEMESTER B.Sc.	DEGREE E	XAMINAT	TION, NOVEN	MBER 2015
	(U.G.—CC			
Core C	lourse-Physics	Applied Phy	ysics	
PH 5B 11/AP 5B 13-	PHYSICAL OF	TICS AND	MODERN OPT	ICS
C	2009—2012 Ad	Imissions)		
Three Hours			Maxin	num : 30 Weightage
	Section	A		
Each	Answer all question carrie	s 4 weighta	ge.	
Light travels along a path having	ng the ———	Optical leng	gth :	
(a) Zero.	(b)	Minimum.		
(c) Maximum.	(d)	Infinite.		
. Two points which can inter char	nge their positio	ns are know	n as	
The inverse of the reduced focal	l length is know	n as —	-	
. The chromatic dispersion of the	material of a pr	ism depends	on:	
(a) Angle of the prism.	(b)	Refractive	index.	
(c) Both (a) and (b).	(d)	None of the	ese.	
In interference there is :				
(a) Creation of energy.	(b)	Destruction	n of energy.	
(c) Both (a) and (b).	(d)	Redistribu	tion of energy.	
The property of coherence is cla	ssified into	(0)		
In a bi-prism experiment, if the the fringe pattern will :	e equal angle of	the two com	ponent prisms ar	e slightly increased
(a) Get enlarged.	(b)	Shrink.		
(c) Vanish.	(d)	None of th	ese.	
8. To obtain Fraunhoffer diffraction	on from a single	slit the way	e front of the inci	dent light must be
(a) Plane.	(b)	Cylindrica	1.	

(d) Spherical

(a) Plane.

(c) Elliptical.

Turn over

- A diffraction pattern is obtained using a beam of red light. What happens if it is replaced by blue light?
 - (a) Diffraction bands broaden.
 - (b) Diffraction bands become narrower and crowd together.
 - (c) Diffraction bands disappear.
 - (d) No change.
- Optical harmonic generation is an example of phenomena.
- 11. One of the following is a non linear optical effect:
 - (a) Raman effect.

(b) Zeeman effect.

(c) Compton effect.

- (d) Interference.
- 12. The light gathering ability of the optical fiber is determined by :
 - (a) Cladding.

(b) Numerical aperture.

(c) Grading.

(d) Guiding.

 $(12 \times \% = 3 \text{ weightage})$

Section B

Answer all questions.

Each question carries 1 weightage.

- State Fermat's principle.
- 14. Is it possible to observe interference fringes with light emanating from two independent forces? Why?
- 15. What are the conditions for producing interference fringes?
- Distinguish between temporal coherence and spatial coherence.
- 17. What is diffraction of light? How is it different from interference?
- 18. Will X-rays falling on an optical diffraction grating be diffracted? Give reason.
- 19. What is double diffraction?
- 20. Explain the meaning of the terms ASK, FSK and PSK.
- 21. What is a non linear medium?

 $(9 \times 1 = 9 \text{ weightage})$

Section C

Answer any five questions. Each question carries 2 weightage.

- 22. Derive the laws of reflection using Fermat's principle.
- 23. Derive the equations for the image and magnification of an optical system using the matrix method

- Red light from a He-Ne laser λ = 632.8 nm is incident on a screen containing very narrow horizontal shts separated by 0.2 mm. A fringe pattern appears on a screen held 1.0 m away. How far above and below the central axis are the first zeroes of irradiance? How far from the axis is the fifth bright band.
- 25. How is zone plate made? What is the radius of the first zone in a plate of principal focal length 0.2 m for light of wavelength 512 nm.
- 26 Consider a diffraction grating of width 5 cm with slit width 10⁻⁶ m separated by a distance of 2 × 10⁻⁶ m. What is the corresponding grating element? How many orders would be observable if λ = 5.5 × 10⁻⁷ m.
- 27. What is the difference between right circularly polarized light and left circularly polarized light?
- 28. What is a fiber guide? Discuss the working principle of a fiber guide. What do you mean by a graded index fiber and a step index fiber?

 $(5 \times 2 = 10 \text{ weightage})$

Section D

Answer any two questions.

Each question carries 4 weightage.

- 29. Explain parametric oscillation. Describe an arrangement for observing parametric oscillation in a non-linear medium? What is self-focusing of light?
- 30. Explain the working of a Michelson interferometer. Describe how the difference between two close wavelengths can be determined using the interferometer.
- Describe the necessary theory how the wave length of a monochromatic source of radiation can be determined using Newton's ring arrangement.
- 32. What is specific rotation? How is it experimentally determined using Laurent's half shade polarimeter?

 $(2 \times 4 = 8 \text{ weightage})$