T	50	CO	7
IJ.	90	OU	4

(Pages: 2)

Name	****

Reg. No.....

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(CUCBCSS-UG)

Physics/Applied Physics

PHY 5B 07/APY 5B 08-QUANTUM MECHANICS

Time: Three Hours Maximum: 80 Marks

Section A

Answer all questions.

- 1. Write down Rayleigh-Jeans formula.
- 2. Average energy of Planck's oscillator is -
- 3. Write down uncertainty principle.
- 4. Write down energy time uncertainty relation.
- 5. Write the expression for Balmer series.
- 6. The spectral series of Hydrogen in ultra violet regions.
- 7. Write down the expression for orbital radius of Hydrogen atom in terms of Bohr radius.
- 8. Write down the condition for normalization of the wave function.
- 9. Orbital angular momentum quantum number can have the values ------
- Operator correspondence of energy is ———.

 $(10 \times 1 = 10 \text{ marks})$

Section B

Answer all questions.

- 11. What is photoelectric effect.
- 12. Explain pair production.
- 13. Explain Schwarzschild radius.
- 14. Distinguish between phase and group velocity.
- 15. Write down the Bohr Postulates.
- 16. Write down the admissibility condition for a function to become wave function.
- 17. Distinguish between are 'classical state' with 'Quantum state'.

 $(7 \times 2 = 14 \text{ marks})$

Section C

Answer any five questions.

- 18. Derive the expression for gravitational red sift.
- 19. Explain the working of electron microscope using a diagram.
- 20. Explain Frank-Hertz experiment
- 21. Derive the steady state Schrodinger equation from time dependent Schrodinger equation.
- 22. Write a short note on scanning tunneling microscope.
- 23. Give the idea of allowed transition and forbidden transition.
- 24. Explain Zeeman effect.

 $(5 \times 4 = 20 \text{ marks})$

Section D

Answer any four questions.

- 25. What potential difference must be applied to stop fastest photoelectrons emitted by a surface when electromagnetic radiation of frequency 1.5 × 10¹⁵Hz is allowed to fall on it. The work function of the surface is 5eV.
- 26. X-rays of wave length 80pm are scattered 120° by a largest. Find out the scattered wave length.
- Calculate the de-Broglie wave length of an electron having kinetic energy of 1000eV. Compare the result with the wave lengths of X-rays having same energy.
- 28. The average life time of an excited atomic state is 10⁻⁹s. If the spectral line associated with the decay of this state is 6000A°, estimate the width of the line.
- 29. Calculate the maximum wave length that Hydrogen in its ground state can absorb.
- Find the expectation value <x> of the position of a particle trapped in a box L wide.
- 31. Find out the normalization constant 'A' of the azimuthal wave function for Hydrogen atom, with $\Phi = Ae^{im\Phi}$.

 $(4 \times 4 = 16 \text{ marks})$

Section E

Answer any two questions.

- 32. What is Compton effect? Derive the expression for shift in the wave length? Write the salient features of Compton effect.
- 33. Derive the energy eigen values and eigen function of partied confined in a box.
- Obtain the Schrodinger equation for Hydrogen atom in spherical polar co-ordinates and obtain the differential equation for r, θ, φ by using separation of variable method.
- 35. What are matter waves? Derive the expression for wavelength of matter waves. Describe Davisson-Germer experiment to establish the wave nature of particle.