C	a	n	n	×	-
U	O	u	v	Ð	o.

(Pages: 3)

Name	 	 ****

Reg. No.....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2019

(CUCBCSS)

Physics/Applied Physics

PHY 6B 10/APY 6B 11-THERMAL AND STATISTICAL PHYSICS

Time: Three Hours

Maximum: 80 Marks

Section A

Answer in a word or phrase.

Answer all questions.

Each question carries 1 mark.

- 1. What do you mean by quasi static process?
- diagram is also known as indicator diagram.
- The rate of fall of temperature with distance is called ———.
- In an isothermal process, heat absorbed by a system, Δ Q =
- 5. The efficiency of petrol engine is greater than that of diesel engine. (True or False).
- 6. A sphere, a cube and a thin circular plate, all made of the same material and having the same mass are initially heated to a temperature of 3000°C. Which of these will cool fastest?
- 7. Write down the Clausius -Clapeyron equation.
- 8. Write down the BE distribution function.
- Give the Kelvin Plank statement for the second law of thermodynamics.
- 10. What is Nernst theorem ?

 $(10 \times 1 = 10 \text{ marks})$

Section B

Answer in a short paragraph three or four sentences.

Answer all questions.

Each question carries 2 marks.

- 11. Explain isothermal process.
- 12. What is phase space?
- 13. Derive an expression for the efficiency of a Carnot's engine using TS diagram.

Turn over

- 14. State and explain the zeroth law of thermodynamics.
- 4 15. Draw Otto cycle and explain the various strokes.
 - 16. Distinguish between microcanonical and grand canonical ensembles.
 - Explain the conditions under which BE statistics holds good.

 $(7 \times 2 = 14 \text{ marks})$

Section C

Answer in a paragraph of about half a page to one page.

Answer any five questions.

Each question carries 4 marks.

- 18. State the first law of thermodynamics. Give its physical significance. What are the limitations of first law?
- What is entropy? Show that entropy remains constant in a reversible process, but increases in an irreversible process.
- 20. State and explain Nernst's heat theorem.
- Deduce the second latent heat equation of Clausius C₂ C₁ = (dL/dT) (L/T) where C₁ and C₂ represent the specific heat of a liquid and its saturated vapour and L is the latent heat of the vapour.
- 22. Show that for a perfect gas $(\partial U/\partial V)_{\rm p} = 0$.
- 23. What do you mean by breakdown of equipartition theorem? When does it occur?
- 24. Compare the MB, FD and BE statistics.

 $(5 \times 4 = 20 \text{ marks})$

Section D

Problems- write all relevant formulas.

All important steps carry separate marks.

Answer any four questions.

Each question carries 4 marks.

- Show that adiabatic curve is steeper than isothermal curve.
- 26. A motor car tyre has a pressure of 2 atmospheres at the room temperature of 27°C. If the tyre suddenly bursts find the resulting temperature.
- 27. Find the efficiency of a Carnot's engine working between the steam point and the ice point.
- 28. Calculate the increase in entropy of 10 kg of water at 100°C when it changes to vapour.

- Calculate the specific heat of saturated steam at 100°C from the following data. L at 90°C = 545.25cal
 L at 100°C = 539.30cal
 L at 110°C = 533.17cal
 Specific heat of water at 100°C = 1.013 cal/g
- 30. Consider 100 molecules and 10 cells of equal energy. Find log 'Ω for (i) the most probable distribution; (ii) the least probable distribution.
- 31. Calculate the root mean square speed of a molecule of hydrogen at N.T.P. The Boltzmann's constant is 1.38×10^{-16} erg per degree and Avogadro's number is 6×10^{23} g/mol.

 $(4 \times 4 = 16 \text{ marks})$

Section E (Essays)

Answer in about two pages.

Answer any two questions.

Each question carries 10 marks.

- 32. (a) What is an adiabatic process?
 - (b) Derive an expression for the work done in an adiabatic process.
- Derive Maxwell's four thermodynamic relations. Discuss the usefulness of these relations.
- Describe with necessary theory the construction and working of a diesel engine. Explain its merits over Otto engine.
- 35. State and prove the theorem of equipartition of energy. Give the merits of this theorem.

 $(2 \times 10 = 20 \text{ marks})$