W.	100	nn	-
	241	. 36.3	51
	340	$u \cdot u$	

(Pages: 3)

Na	me	

Reg. No.....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2018

(CUCBCSS-UG)

Physics/Applied Physics

PHY 6B 12/APY 6B 13-NUCLEAR PHYSICS, PARTICLE PHYSICS AND ASTROPHYSICS

Time : Three Hours Maximum : 80 Marks

The symbols used in this question paper have their usual meanings.

Section A (Answer in a word or a phrase)

Answer all questions; each question carries 1 mark.

- The energy equivalent of 1 atomic mass unit is MeV.
- 2. When an electron is captured by a nuclear proton, the resulting particle is ------
- 3. Which is the lightest meson?
- 4. Is the output of a cyclotron continuous?
- 5. I par sec is equal to light years.

Questions 6 to 10 : write True or False.

- Neutrons possess a spin magnetic moment.
- 7. Barn has the dimension of volume.
- 8. A proportional counter is used for neutron counting.
- Secondary cosmic rays mainly contain alpha particles.
- 10. Gravitons are not detected.

 $(10 \times 1 = 10 \text{ marks})$

Section B

(Answer in two or three sentences)
Answer all questions; each question carries 2 marks.

- 11. What do you mean by Larmor frequency? Give an expression for the Larmor frequency.
- What are isotopes? Give an example.
- 13. List the different radioactive series. Mention the parent element in each case.

Turn over

- 14. Explain the confinement method used in a Tokamak.
- 15. What is the strange behavior of kaons and hyperons?
- 16. What are the fundamental interactions in nature?
- 17. What do you mean by ecliptic?

 $(7 \times 2 = 14 \text{ marks})$

Section C

(Answer in a paragraph of about half a page to one page)
Answer any five questions; each question carries 4 marks.

- 18. Comment on the nuclear stability using an N vs. Z plot.
- 19. Discuss the principle of radiocarbon dating. Mention its application.
- 20. What are the steps involved in a carbon-nitrogen cycle in sun?
- 21. Briefly explain the working principle of a proportional counter.
- 22. List the elementary particles.
- 23. Discuss the principle of a betatron accelerator.
- Explain what is meant by celestial sphere.

 $(5 \times 4 = 20 \text{ marks})$

Section D

(Problems-write all relevant formulas, all important steps carry separate marks)

Answer any four questions; each question carries 4 marks.

- 25. Estimate the binding energy of the nucleus 12 6C. Also determine its density.
- 26. The half life of radon is 3.8 days. After how many days will only one twentieth of a radon sample be left over?
- 27. Obtain the energy released by fission of 1 kg of 235U, if the energy released per fission is 200 MeV.
- 28. With the help of a neat diagram, explain the working principle of a Wilson cloud chamber.
- 29. Discuss the effect of geomagnetic field on the movement of cosmic rays.
- 30. Check whether the following muon decay is allowed or not. $\mu^- \rightarrow e^- + \overline{v}_e + v_\mu$.
- 31. Which are the colour indices of stars?

Section E

(Essays-answer in about two pages) Answer any two questions; each question carries 10 marks.

- 32. Obtain an expression for the binding energy per nucleon of a nucleus using liquid drop model. Discuss the corrections to the expression from asymmetry energy and pairing energy and obtain the semi empirical binding energy formula.
- 33. Discuss the tunnel theory of alpha decay.
- 34. Discuss the quark model. Give the features of the different quarks. What is the quark composition of π⁺, K⁺ and Ω⁻?
- 35. Using a neat diagram explain the working principle of a van de Graaf electrostatic generator.

 $(2 \times 10 = 20 \text{ marks})$