D	A	n	n	Ħ	~
v	**	v	u	Ð	v

(Pages: 3)

Name	

Reg. No.....

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2018

(CUCBCSS-UG)

Physics/Applied Physics

PHY 6B 11/APY 6B 12—SOLID STATE PHYSICS, SPECTROSCOPY AND LASER PHYSICS

Time: Three Hours

Maximum: 80 Marks

Section A (Answer in a Word or a Phrase)

Answer all questions. Each question carries 1 mark.

- The number of lattice points in a primitive cell is ________
- 2. Name the theory which explains the phenomenon of superconductivity.
- Give the relation between atomic radius and lattice constant in fcc structure.
- 4. Expand LASER.
- The transition temperature of mercury is ———.

Questions 6 to 10 : write True or False

- 6. For a spherical top molecule, all the three principal moment of inertia are equal.
- The intensities of antistoke lines are greater than stokes lines.
- 8. The population inversion in Ruby laser is achieved by electrical pumping
- 9. The vibrational energy at the lowest vibrational level is zero
- 10. Super conductors are diamagnetic.

 $(10 \times 1 = 10 \text{ marks})$

Section B (Answer in two or three sentences)

Answer all questions.
Each question carries 2 marks.

- 11. What are Miller indices ?
- 12. What is meant by population inversion?
- 13. How cooper pairs are formed in superconductors?
- 14. What is co-ordination number?
- 15. Give the advantage of using laser as a Raman source.

- 16. What are hot bands in vibrating diatomic molecule?
- 17. State mutual exclusion principle.

 $(7 \times 2 = 14 \text{ marks})$

Section C

Answer in a paragraph of about half a page to one page.

Answer any five questions.

Each question carries 4 marks.

- 18. Discuss the crystal structure of diamond.
- 19. Derive Bragg's law for X ray diffraction in crystals.
- Discuss type I and type II superconductors.
- 21. Discuss normal vibrations of CO2 and H2O melecule.
- 22. Obtain Einstein's coefficients related to emission and absorption.
- 23. Discuss electromagnetic spectrum.
- 24. Briefly explain the working of semiconductor laser.

 $(5 \times 4 = 20 \text{ marks})$

Section D

Problems-write all relevant formulas, all important steps carry separate marks.

Answer any four questions; each question carries 4 marks

- 25. The Raman line associated with a vibrational mode which is both Raman and infrared active is found at 4600 Å when excited by a light of wavelength 4358 Å. Calculate the wavelength of the corresponding infrared band.
- 26. The critical temperature, T_c for mercury with isotopic mass 199.5 is 4.185 K. Calculate its critical temperature when its isotopic mass changes to 230.4.
- 27. The first three rotational Raman lines of a linear triatomic molecule are at 4.86, 8.14 and 11.36 cm⁻¹ from the exciting Raman line. Estimate the rotational constant B and the moment of inertia of the molecule.
- 28. The lattice parameter and the atomic weight of a diamond crystal are 3.57 Å and 12 a.m.u. respectively. Calculate the density of the same, Given $N=6.023\times 10^{23}$ /mol.
- 29. A monochromatic X ray beam of λ = 0.7 Å undergoes first order Bragg reflection from the plane (3 0 2) of a cubic crystal at a glancing angle of 35°. Calculate the lattice constant.

- Copper has fcc structure of atomic radius 0.1278 nm. Calculate the interplanar spacing for (3 2 1)
 plane.
- 31. A He-Ne laser is emitting a laser beam with an average power of 4.5 mW. Find the number of photons emitted per second by the laser. The wavelength of emitted radiation is 6328 Å

 $(4 \times 4 = 16 \text{ marks})$

Section E (Essays-answer in about two pages)

Answer any two questions. Each question carries 10 marks.

- 32. Discuss Bravais lattice and crystal systems with the help of illustrations.
- 33. Explain with a schematic diagram the working of a He-Ne laser.
- 34. Explain diatomic vibrating rotator. Discuss the spectrum and relevant selection rules.
- 35. Discuss rotational Raman spectra of symmetric top molecule. Give example

 $(2 \times 10 = 20 \text{ marks})$