D 13382

(Pages : 6)

Name.....

Reg. No.....

FIRST SEMESTER M.A. DEGREE EXAMINATION, DECEMBER 2016

(CUCSS)

Economics

ECO 1C 04-QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS-I

(2015 Admissions)

Time : Three Hours

Maximum : 36 Weightage

Part A (Multiple Choice)

Answer all the **twelve** questions. Each question carries a weightage of ¹/₄.

If A =	$\begin{bmatrix} 3 & 4x \\ -1 & 6 \end{bmatrix}$ and	and $B = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 8\\ 3x \end{bmatrix} \text{ and } A =$	= B th	nen x is :
(a)	6.			(b)	3.
(c)	2.			(d)	-1.
2. For an orthogonal matrix A :					
(a)	$\mathbf{A}^{\mathbf{T}}=\mathbf{A}.$			(b)	$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{I}.$
(c)	$\mathbf{A}^2 = \mathbf{A}.$			(d)	$\overline{\mathbf{A}}^{\mathrm{T}} = \mathbf{A}.$
3. The signed minor is called :					
(a)	Inverse.			(b)	Co-factor.
(c)	Orthogona	al.		(d)	Adjoint.
4. For an idempotent matrix A :					
(a)	$\mathbf{A}^{\mathrm{T}}=\mathbf{A}.$			(b)	$\mathbf{A}^{\mathrm{T}}\mathbf{A}=\mathbf{I}.$
(c)	$\mathbf{A}^2 = \mathbf{A}.$			(d)	$\overline{\mathbf{A}}^{\mathrm{T}} = \mathbf{A}.$
$\lim_{x\to 3}\frac{x^2}{x}$	-9 -3 is:		- (0)** -10		
(a)	0.			(b)	3.
(c)	6.	-	-	(d)	9.
	(a) (c) For an (a) (c) The sig (a) (c) For an (a) (c) Im $\frac{x^2}{x}$ (a)	(a) 6. (c) 2. For an orthogonal (a) $A^{T} = A$. (c) $A^{2} = A$. The signed minor if (a) Inverse. (c) Orthogonal	(a) 6. (c) 2. For an orthogonal matrix A : (a) $A^{T} = A$. (c) $A^{2} = A$. (c) $A^{2} = A$. The signed minor is called : (a) Inverse. (b) Orthogonal. For an idempotent matrix A : (c) $A^{T} = A$. (c) $A^{2} = A$. (c) $A^{2} = A$. (c) $A^{2} = A$. (d) $A^{T} = A$. (e) $A^{2} = A$.	(a) 6. (c) 2. For an orthogonal matrix A : (a) $A^{T} = A$. (c) $A^{2} = A$. The signed minor is called : (a) Inverse. (b) Orthogonal. For an idempotent matrix A : (c) $A^{T} = A$. (c) $A^{T} = A$. (c) $A^{2} = A$. Image $\frac{x^{2} - 9}{x - 3}$ is : (a) 0.	(c) 2. (d) For an orthogonal matrix A : (a) $A^T = A$. (b) (a) $A^T = A$. (b) (c) $A^2 = A$. (d) The signed minor is called : (a) Inverse. (a) Inverse. (b) (c) Orthogonal. (d) For an idempotent matrix A : (a) $A^T = A$. (b) (c) $A^2 = A$. (d) Imm $\frac{x^2 - 9}{x - 3}$ is : (d) (a) 0. (b)

Turn over

6. If
$$y = 2x^4 + \cos x$$
, then $\frac{d^2y}{dx^2}$ is :

- (a) $24x^2 \frac{\cos x}{x}$. (b) $24x^2 \cos x$.
- (c) $24x^2 \sin x$. (d) $4x + \cos x$.

7. $\int_0^\infty e^{-2x} dx$ is:

(a)
$$\frac{1}{2}$$
.
(b) 2.
(c) $\frac{-1}{2}$.
(d) -2.

8. If A and B are mutually exclusive events, then P (A \cup B) is :

(a)
$$P(A) + P(B) - P(A \cap B)$$
. (b) $P(A) + P(B)$.
(c) $P(A) + P(B) - P(A) \cdot P(B)$. (d) $P(A) \cdot P(B/A)$

9. If A and B are any two events and P(A) = 0.5, P(B) = 0.6, $P(A \cap B) = 0.3$ then $P(A \cup B)$ is :

(a)
$$0.2.$$
 (b) $0.4.$

(c) 0.8. (d) 0.65.

10. For any two independent events A and B, $P(A \cap B)$ is :

- (a) P(A) + P(B). (b) P(B) P(AB).
- (c) $P(A) \cdot P(B)$. (d) P(A) P(AB).

11. If A and B are two dependent events then P(A/B) is :

(a)
$$\frac{P(A \cap B)}{P(A)}$$
. (b) $\frac{P(A \cap B)}{P(B)}$

(c)
$$P(B)$$
. (d) $\frac{P(A \cap B)}{P(A)}$.

- 12. If X is a discrete random variable, and F(x) is the cumulative density function, then the probability mass function p(x) is :
 - (a) F(x + 1) F(x). (b) F(x) - F(x - 1). (c) F(x) - F(x + 1). (d) F(x + 1) - F(x - 1).

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Part B (Very Short Answers)

Answer any five questions. Each question carries 1 weightage.

13. If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & -7 \\ 5 & 8 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 5 \\ 0 & 2 \end{pmatrix}$ then find $A + 2B - C$.

14. Find the co-factors of 2 and 3 in $\begin{pmatrix} 2 & 1 & 5 \\ 3 & 4 & 2 \\ 6 & 8 & 4 \end{pmatrix}$.

- 15. For the cost function $c(x) = 1 + 2x + 3x^2$, find the marginal cost of producing 10 units.
- 16. If $y = 2x^3 + \log x$, then find $\frac{d^2y}{dx^2}$.

17. Differentiate $\frac{(5x-2)^2}{x-3}$ with respect to x and hence find the stationary points.

Turn over

- 18. Evaluate $\int_0^\infty 6e^{-3x} dx$.
- 19. Define the terms random experiment and sample space.
- 20. Find the probability of drawing any one spade card from a pack of cards.

 $(5 \times 1 = 5 \text{ weightage})$

Part C (Short Answers)

4

Answer any **eight** questions. Each question carries 2 weightage.

21. Find the rank of the matrix $\begin{pmatrix} 3 & 1 & 4 & 2 \\ 1 & 2 & 3 & -1 \\ 2 & 1 & 6 & 2 \end{pmatrix}$.

22. Find
$$A^{-1}$$
, if $A = \begin{bmatrix} 9 & 7 & 3 \\ 5 & -1 & 4 \\ 3 & 4 & 1 \end{bmatrix}$.

23. Find characteristic roots of
$$\begin{pmatrix} 2 & 1 & 5 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$
.

24. Find the maxima and minima of the total cost function

$$TC = 31 + 24Q - 5, 5Q^2 + \frac{1}{3}Q^3$$

25. Find the slope of the function $x^3 - 14x^2 + 24 = 0$ at x = 2 and at x = -3.

- 26. Find the partial derivatives $\frac{\partial^2 y}{\partial x^2}$ and $\frac{\partial^2 x}{\partial y^2}$ of the function $3x^4 6y^4 + 10xy + 5$.
- 27. Explain about constraint optimization methods?

28. A problem in Statistics is given to three students A, B and C whose chances of solving it are $\frac{1}{2}$,

 $\frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved ?

29. Explain Baye's theorem on conditional probability and give its uses.

30. If the p.m.f. of a random variable X is :

$$p(x) = \frac{x}{15}$$
, $x = 1, 2, 3, 4, 5$
= 0, otherwise

Find (i) $P\{X = \text{multiple of 2 or 4}\}\$; (ii) $P\{\frac{3}{2} < X < \frac{9}{2}\}\$; and (iii) $P\{\frac{3}{2} < X < \frac{9}{2} \mid X > 3\}.$

31. Define mathematical expectation. The probability that a man fishing at a particular place will catch 1, 2, 3, 4 fish are 0.4, 0.3, 0.2 and 0.1 respectively. What is the expected number of fishes caught ?

 $(8 \times 2 = 16 \text{ weightage})$

Part D (Essays)

Answer any **three** questions. Each question carries 4 weightage.

32. The demand and supply functions of three commodities X, Y, Z are given as :

$$\begin{aligned} d_x &= 23 - 5p_x + 3p_y - 3p_z & ; & S_x = 3 + p_x. \\ d_y &= 12 + 3p_x + 6p_y + 3p_z & ; & S_x = 15 + 6p_y. \\ d_z &= 64 - 3p_x - 3p_y - 9p_z & ; & S_x = 10 + 6p_z. \end{aligned}$$

Obtain the equilibrium prices and quantities.

33. If p_t be the price, x_t the per capita quantity, y_t the per capita disposable income at time t and the demand function is :

 $\log p_i = 0.618 - 2.27 \log x_i + 1.31 \log y_i.$

Compute the price elasticity and income elasticity of demand.

34. In a bolt manufacturing factory machines A, B and C manufactures respectively 50%, 30% and 20% of the total. Of their output 4, 5, 2 percents are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines A, B and C?

Turn over

- 35. A bag contains 30 balls numbered from 1 to 30. One ball is drawn at random. Find the probability that the number on the ball drawn will be a multiple of (i) 5 or 6, (ii) 3 or 4, (iii) 5 and 3. A reward of Rs. 100 is given if the number on the selected ball is a multiple of 5 or 6 and reward of Rs. 150 and Rs. 200 are given if the selected number is a multiple of 3 or 4, 5 and 3 respectively. Find the expected reward obtained.
- 36. A random variable X assumes the values -3, -2, -1, 0, 1, 2, 3 such that P (X = -3) = P(X = -2) = P(X = -1), P(X = 1) = P(X = 2) = P(X = 3) and P(X = 0) = P(X > 0) = P(X < 0). Obtain the probability mass function of X and distribution function of X.

 $(3 \times 4 = 12 \text{ weightage})$